Back to Search
Start Over
Initial O₂ Insertion Step of the Tryptophan Dioxygenase Reaction Proposed by a Heme-Modification Study
- Source :
- Biochemistry. 54(23)
- Publication Year :
- 2015
-
Abstract
- L-Tryptophan 2,3-dioxygenase (TDO) is a protoheme-containing enzyme that catalyzes the production of N-formylkynurenine by inserting O₂ into the pyrrole ring of L-tryptophan. Although a ferrous-oxy form (Fe²⁺-O₂) has been established to be an obligate intermediate in the reaction, details of the ring opening reaction remain elusive. In this study, the O₂ insertion reaction catalyzed by Pseudomonas TDO (PaTDO) was examined using a heme-modification approach, which allowed us to draw a quantitative correlation between the inductive electronic effects of the heme substituents and the substituent-induced changes in the functional behaviors of the ferrous-oxy form. We succeeded in preparing reconstituted PaTDO with synthetic hemes, which were different with respect to the inductive electron-withdrawing nature of the heme substituents at positions 2 and 4. An increase in the electron-withdrawing power of the heme substituents elevated the redox potential of reconstituted PaTDO, showing that the stronger the electron-withdrawing ability of the heme substituents, the lower the electron density on the heme iron. The decrease in the electron density of the heme iron resulted in a higher frequency shift of the C-O stretch of the heme-bound CO and enhanced the dissociation of O₂ from the ferrous-oxy intermediate. This result was interpreted as being due to weaker π back-donation from the heme iron to the bound CO or O₂. More importantly, the reaction rates of the ferrous-oxy intermediate to oxidize L-Trp were increased with the electron-withdrawing ability of the heme substituents, implying that the more electron-deficient ferrous-oxy heme is favored for the PaTDO-catalyzed oxygenation. On the basis of these results, we propose that the initial step of the dioxygen activation by PaTDO is a direct electrophilic addition of the heme-bound O₂ to the indole ring of L-Trp.
Details
- ISSN :
- 15204995
- Volume :
- 54
- Issue :
- 23
- Database :
- OpenAIRE
- Journal :
- Biochemistry
- Accession number :
- edsair.pmid..........e048e0da252811ce3b04376824d2d2ee