Back to Search
Start Over
Tracking nickel-adaptive biomarkers in Pisolithus albus from New Caledonia using a transcriptomic approach
- Source :
- Molecular ecology. 21(9)
- Publication Year :
- 2012
-
Abstract
- The fungus Pisolithus albus forms ectomycorrhizal (ECM) associations with plants growing on extreme ultramafic soils, which are naturally rich in heavy metals such as nickel. Both nickel-tolerant and nickel-sensitive isolates of P. albus are found in ultramafic soils in New Caledonia, a biodiversity hotspot in the Southwest Pacific. The aim of this work was to monitor the expression of genes involved in the specific molecular response to nickel in a nickel-tolerant P. albus isolate. We used pyrosequencing and quantitative polymerase chain reaction (qPCR) approaches to investigate and compare the transcriptomes of the nickel-tolerant isolate MD06-337 in the presence and absence of nickel. A total of 1,071,375 sequencing reads were assembled to infer expression patterns of 19,518 putative genes. Comparison of expression levels revealed that 30% of the identified genes were modulated by nickel treatment. The genes, for which expression was induced most markedly by nickel, encoded products that were putatively involved in a variety of biological functions, such as the modification of cellular components (53%), regulation of biological processes (27%) and molecular functions (20%). The 10 genes that pyrosequencing analysis indicated were induced the most by nickel were characterized further by qPCR analysis of both nickel-tolerant and nickel-sensitive P. albus isolates. Five of these genes were expressed exclusively in nickel-tolerant isolates as well as in ECM samples in situ, which identified them as potential biomarkers for nickel tolerance in this species. These results clearly suggest a positive transcriptomic response of the fungus to nickel-rich environments. The presence of both nickel-tolerant and nickel-sensitive fungal phenotypes in ultramafic soils might reflect environment-dependent phenotypic responses to variations in the effective concentrations of nickel in heterogeneous ultramafic habitats.
Details
- ISSN :
- 1365294X
- Volume :
- 21
- Issue :
- 9
- Database :
- OpenAIRE
- Journal :
- Molecular ecology
- Accession number :
- edsair.pmid..........dd6d8e0251875cd6898db2243756cc0f