Back to Search Start Over

Okadaic acid induces matrix metalloproteinase-9 expression in fibroblasts: crosstalk between protein phosphatase inhibition and β-adrenoceptor signalling

Authors :
A, Rietz
Y, Volkov
A, Davies
M, Hennessy
J P, Spiers
Source :
British journal of pharmacology. 165(1)
Publication Year :
2011

Abstract

Interactions between protein phosphatase inhibition and matrix metalloproteinase (MMP)-9 expression have implications for tissue remodelling after injury. Stimulation of β-adrenoceptors could affect such interactions as isoprenaline increases protein phosphatase 2A (PP2A) activity and MMP-9 abundance. We investigated the effect of okadaic acid (OA) on MMP-9 expression to assess interactions between phosphatase inhibition and β-adrenoceptor signalling in fibroblasts.Fibroblasts were exposed to OA alone and in combination with isoprenaline. Effects on MMP-9 expression and intracellular signalling were studied using promoter assays, Western blot analysis and siRNA methodologies.Okadaic acid increased MMP-9 abundance in human cardiac ventricular fibroblasts, NIH3T3 fibroblasts and hepatic stellate cells. This effect was unaffected by PP2A knockdown in NIH3T3 cells. OA increased phosphorylation of NF-κB, but not NF-κB promoter activity, IκBα degradation, or nuclear translocation of p65-NF-κB. Exposure to SB202190 (p38 MAPK), U0126 (ERK1/2) and NF-κB III inhibitor revealed that OA induced MMP-9 activity through p38 MAPK. Isoprenaline inhibited OA-mediated MMP-9 expression in NIH3T3, in a β-arrestin 2- and PP2A-dependent manner. Mutation of the activator protein-1 (AP-1) and NF-κB binding sites demonstrated that OA-induced MMP-9 activity was mediated through the AP-1 but not NF-κB sites. The latter mediated the inhibitory effect of isoprenaline on OA-induced MMP-9 promoter activity.Okadaic acid induced MMP-9 activity through p38 MAPK and was inhibited by isoprenaline via a pathway involving β-arrestin 2, PP2A and an NF-κB binding motif. These findings elucidate how phosphoprotein phosphatases and adrenoceptors may modulate tissue remodelling by affecting fibroblast function.

Details

ISSN :
14765381
Volume :
165
Issue :
1
Database :
OpenAIRE
Journal :
British journal of pharmacology
Accession number :
edsair.pmid..........dc6e8b25db5a1d147d35a83b072b8fdd