Back to Search
Start Over
Inflammatory biomarker, neopterin, suppresses B lymphopoiesis for possible facilitation of granulocyte responses, which is severely altered in age-related stromal-cell-impaired mice, SCI/SAM
- Source :
- Experimental biology and medicine (Maywood, N.J.). 232(1)
- Publication Year :
- 2007
-
Abstract
- Neopterin is produced by monocytes and is a useful biomarker of inflammatory activation. We found that neopterin enhanced in vivo and in vitro granulopoiesis triggered by the stromal-cell production of cytokines in mice. The effects of neopterin on B lymphopoiesis during the enhancement of granulopoiesis were determined using the mouse model of senescent stromal-cell impairment (SCI), a subline of senescence-accelerated mice (SAM). In non-SCI mice (a less senescent stage of SCI mice), treatment with neopterin decreased the number of colonies, on a semisolid medium, of colony-forming units of pre-B-cell progenitors (CFU-preB) from unfractionated bone marrow (BM) cells, but not that from a population rich in pro-B and pre-B cells without stromal cells. Neopterin upregulated the expression of genes for the negative regulators of B lymphopoiesis such as tumor necrosis factor-alpha (TNF-alpha ), interleukin-6 (IL-6), and transforming growth factor-beta (TGF-beta) in cultured stromal cells, implying that neopterin suppressed the CFU-preB colony formation by inducing negative regulators from stromal cells. The intraperitoneal injection of neopterin into non-SCI mice resulted in a marked decrease in the number of femoral CFU-preB within 1 day, along with increases in TNF-alpha and IL-6 expression levels. However, in SCI mice, in vivo and in vitro responses to B lymphopoiesis and the upregulation of cytokines after neopterin treatment were less marked than those in non-SCI mice. These results suggest that neopterin predominantly suppressed lymphopoiesis by inducing the production of negative regulators of B lymphopoiesis by stromal cells, resulting in the selective suppression of in vivo B lymphopoiesis. These results also suggest that neopterin facilitated granulopoiesis in BM by suppressing B lymphopoiesis, thereby contributing to the potentiation of the inflammatory process; interestingly, such neopterin function became impaired during senescence because of attenuated stromal-cell function, resulting in the downmodulation of the host-defense mechanism in the aged.
Details
- ISSN :
- 15353702
- Volume :
- 232
- Issue :
- 1
- Database :
- OpenAIRE
- Journal :
- Experimental biology and medicine (Maywood, N.J.)
- Accession number :
- edsair.pmid..........daa6c5d54744438c074bc1adc3c02c89