Back to Search Start Over

Gene Editing in Potato Using CRISPR-Cas9 Technology

Authors :
Laura, Chauvin
François, Sevestre
Tjaša, Lukan
Fabien, Nogué
Jean-Luc, Gallois
Jean-Eric, Chauvin
Florian, Veillet
Source :
Methods in molecular biology (Clifton, N.J.). 2354
Publication Year :
2021

Abstract

Genome editing in the cultivated potato (Solanum tuberosum), a vegetatively propagated and highly heterozygous species, constitutes a promising trail to directly improve traits into elite cultivars. With the recent and successful development of the clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 system in eukaryotic cells, the plant science community has gained access to a powerful, inexpensive, and easy-to-use toolbox to target and inactivate/modify specific genes. The specificity and versatility of the CRISPR-Cas9 system rely on a variable 20 bp spacer sequence at the 5' end of a single-guide RNA (sgRNA), which directs the SpCas9 (Streptococcus pyogenes) nuclease to cut the target DNA at a precise locus with no or low off-target events. Using this system, we and other teams were able to knock out specific genes in potato through the error-prone non-homologous end-joining (NHEJ) DNA repair mechanism. In this chapter, we describe strategies to design and clone spacer sequences into CRISPR-SpCas9 plasmids. We show how these constructs can be used for Agrobacterium-mediated stable transformation or transient transfection of protoplasts, and we describe the optimization of these two delivery methods, as well as of the plant regeneration processes. Finally, the molecular screening and characterization of edited potato plants are also described, mainly relying on PCR-based methods such as high-resolution melt (HRM) analysis.

Details

ISSN :
19406029
Volume :
2354
Database :
OpenAIRE
Journal :
Methods in molecular biology (Clifton, N.J.)
Accession number :
edsair.pmid..........d13aec2b03e5843e692080496386ef8d