Back to Search Start Over

Functional co-expression of two insect nicotinic receptor subunits (Nlalpha3 and Nlalpha8) reveals the effects of a resistance-associated mutation (Nlalpha3) on neonicotinoid insecticides

Authors :
Zhang, Yixi
Zewen, Liu
Zhaojun, Han
Feng, Song
Xiangmei, Yao
Ying, Shao
Jian, Li
Neil S, Millar
Source :
Journal of neurochemistry. 110(6)
Publication Year :
2009

Abstract

Neonicotinoid insecticides, such as imidacloprid, are selective agonists of insect nicotinic acetylcholine receptors (nAChRs) and are used extensively to control a variety of insect pest species. Previously, we have identified a nAChR point mutation (Y151S) associated with insecticide resistance in the brown planthopper Nilaparvata lugens. Although this mutation has been identified in two different N. lugens nAChR subunits (Nlalpha1 and Nlalpha3) because of difficulties in heterologous expression of Nlalpha3; its influence on agonist potency has been examined only in Nlalpha1-containing nAChRs. Here we describe the cloning of a novel nAChR subunit from N. lugens (Nlalpha8), together with evidence for its co-assembly with Nlalpha3 in native and recombinant nAChRs. This has, for the first time, enabled the functional effects of the Nlalpha3(Y151S) mutation to be examined. The Nlalpha3(Y151S) mutation has little effect on agonist potency of acetylcholine but has a dramatic effect on neonicotinoid insecticides (reducing I(max) values and increasing EC(50) values). The apparent affinity of neonicotinoids was higher and the effect of the Y151S mutation on neonicotinoid agonist potency was more profound in Nlalpha3-containing, rather than Nlalpha1-containing nAChR. We conclude that Nlalpha3- and Nlalpha1-containing nAChRs may be representative of two distinct insect nAChR populations.

Details

ISSN :
14714159
Volume :
110
Issue :
6
Database :
OpenAIRE
Journal :
Journal of neurochemistry
Accession number :
edsair.pmid..........cfd932a8dbf0bf59ad42995d1761d595