Back to Search Start Over

Self-organizing GeV, nanocoulomb, collimated proton beam from laser foil interaction at 7 x 10;{21} W/cm;{2}

Authors :
X Q, Yan
H C, Wu
Z M, Sheng
J E, Chen
J, Meyer-Ter-Vehn
Source :
Physical review letters. 103(13)
Publication Year :
2009

Abstract

We report on a self-organizing, quasistable regime of laser proton acceleration, producing 1 GeV nanocoulomb proton bunches from laser foil interaction at an intensity of 7 x 10;{21} W/cm;{2}. The results are obtained from 2D particle-in-cell simulations, using a circular polarized laser pulse with Gaussian transverse profile, normally incident on a planar, 500 nm thick hydrogen foil. While foil plasma driven in the wings of the driving pulse is dispersed, a stable central clump with 1-2lambda diameter is forming on the axis. The stabilization is related to laser light having passed the transparent parts of the foil in the wing region and enfolding the central clump that is still opaque. Varying laser parameters, it is shown that the results are stable within certain margins and can be obtained both for protons and heavier ions such as He;{2+}.

Details

ISSN :
00319007
Volume :
103
Issue :
13
Database :
OpenAIRE
Journal :
Physical review letters
Accession number :
edsair.pmid..........c00d9b6e81de6848681b66d4d1cc6e63