Back to Search
Start Over
The complex I subunit NDUFA10 selectively rescues Drosophila pink1 mutants through a mechanism independent of mitophagy
- Source :
- PLoS Genetics
- Publication Year :
- 2013
-
Abstract
- Mutations in PINK1, a mitochondrially targeted serine/threonine kinase, cause autosomal recessive Parkinson's disease (PD). Substantial evidence indicates that PINK1 acts with another PD gene, parkin, to regulate mitochondrial morphology and mitophagy. However, loss of PINK1 also causes complex I (CI) deficiency, and has recently been suggested to regulate CI through phosphorylation of NDUFA10/ND42 subunit. To further explore the mechanisms by which PINK1 and Parkin influence mitochondrial integrity, we conducted a screen in Drosophila cells for genes that either phenocopy or suppress mitochondrial hyperfusion caused by pink1 RNAi. Among the genes recovered from this screen was ND42. In Drosophila pink1 mutants, transgenic overexpression of ND42 or its co-chaperone sicily was sufficient to restore CI activity and partially rescue several phenotypes including flight and climbing deficits and mitochondrial disruption in flight muscles. Here, the restoration of CI activity and partial rescue of locomotion does not appear to have a specific requirement for phosphorylation of ND42 at Ser-250. In contrast to pink1 mutants, overexpression of ND42 or sicily failed to rescue any Drosophila parkin mutant phenotypes. We also find that knockdown of the human homologue, NDUFA10, only minimally affecting CCCP-induced mitophagy, and overexpression of NDUFA10 fails to restore Parkin mitochondrial-translocation upon PINK1 loss. These results indicate that the in vivo rescue is due to restoring CI activity rather than promoting mitophagy. Our findings support the emerging view that PINK1 plays a role in regulating CI activity separate from its role with Parkin in mitophagy.<br />Author Summary Two genes linked to heritable forms of the neurodegenerative movement disorder Parkinson's disease (PD), PINK1 and parkin, play important roles in mitochondrial homeostasis through mechanisms which include the degradation of dysfunctional mitochondria, termed mitophagy, and the maintenance of complex I (CI) activity. Here we report the findings of an RNAi based screen in Drosophila cells for genes that may regulate the PINK1-Parkin pathway which identified NDUFA10 (ND42 in Drosophila), a subunit of CI. Using a well-established cellular system and in vivo Drosophila genetics, we demonstrate that while NDUFA10/ND42 only plays a minimal role in mitophagy, restoration of CI activity through overexpression of either ND42 or its co-chaperone sicily is able to substantially rescue behavioral deficits in pink1 mutants but not parkin mutants. Moreover, while parkin overexpression is known to rescue pink1 mutants, it apparently achieves this without restoring CI activity. These results suggest that increasing CI activity or promoting mitophagy can be beneficial in pink1 mutants, and further highlights separable functions of PINK1 and Parkin.
- Subjects :
- Electron Transport Complex I
Ubiquitin-Protein Ligases
Mitophagy
Biology and Life Sciences
Parkinson Disease
Neurodegenerative Diseases
Cell Biology
Protein Serine-Threonine Kinases
Mitochondria
Animals, Genetically Modified
Disease Models, Animal
Drosophila melanogaster
Neurology
Mutation
Molecular Cell Biology
Medicine and Health Sciences
Animals
Drosophila Proteins
Humans
Research Article
Neuroscience
Subjects
Details
- ISSN :
- 15537404
- Volume :
- 10
- Issue :
- 11
- Database :
- OpenAIRE
- Journal :
- PLoS genetics
- Accession number :
- edsair.pmid..........bc7028bf39dac0c0824876e14ba3c2d8