Back to Search Start Over

Characterization of homologous 5-hydroxytryptamine4 receptor desensitization in colliculi neurons

Authors :
H, Ansanay
M, Sebben
J, Bockaert
A, Dumuis
Source :
Molecular pharmacology. 42(5)
Publication Year :
1992

Abstract

Exposure of mouse colliculi neurons to selective 5-hydroxytryptamine (5-HT)4 agonists was accompanied by a rapid desensitization of the receptor-stimulated adenylyl cyclase response. Half-maximal desensitization occurred after 2 min. Only exposure of neurons to selective 5-HT4 agonists led to a potent desensitization of the 5-HT4-mediated response. Neurons exposed to other agents, like isoproterenol, vasoactive intestinal peptide, or forskolin, that increase cAMP levels did not undergo any desensitization of 5-HT4 receptors. Activation of protein kinase A with either 8-bromo-cAMP or dibutyryl-cAMP or application of inhibitors of protein kinase A-dependent phosphorylation did not change the rate of 5-HT4-induced desensitization. No shift to lower potency of 5-HT4 agonists in the concentration-response curve was observed. These results suggest that 5-HT4 receptor agonists induced homologous but not cAMP-mediated heterologous desensitization. A good correlation was found between the affinities of nine 5-HT4 agonists and their abilities to desensitize the adenylyl cyclase response. This may indicate that homologous desensitization is a function of the mean occupancy time of the receptors by agonists. When permeabilized neurons were loaded with heparin, an inhibitor of the beta-adrenergic receptor kinase (beta ARK), 5-HT4 receptor desensitization was reduced by 30-40%. Interestingly, Zn2+, an other inhibitor of beta ARK, totally prevented 5-HT4-induced desensitization. Pretreatment of neurons with concanavalin A, reported to inhibit sequestration of beta-adrenergic receptors from the cell surface, reduced the desensitization process by 70%. These data suggest that both sequestration and phosphorylation by beta ARK, or another specific agonist-dependent receptor kinase, are involved in homologous desensitization of 5-HT4 receptors coupled to adenylyl cyclase.

Details

ISSN :
0026895X
Volume :
42
Issue :
5
Database :
OpenAIRE
Journal :
Molecular pharmacology
Accession number :
edsair.pmid..........8f2709ebaa6a81153f588af6aca53903