Back to Search Start Over

Stability of temperate coral

Authors :
Dawn B, Goldsmith
Zoe A, Pratte
Christina A, Kellogg
Sara E, Snader
Koty H, Sharp
Source :
AIMS Microbiology
Publication Year :
2018

Abstract

The microbiome of the temperate coral Astrangia poculata was first described in 2017 using next-generation Illumina sequencing to examine the coral's bacterial and archaeal associates across seasons and among hosts of differing symbiotic status. To assess the impact of methodology on the detectable diversity of the coral's microbiome, we obtained near full-length Sanger sequences from clone libraries constructed from a subset of the same A. poculata samples. Eight samples were analyzed: two sets of paired symbiotic (brown) and aposymbiotic (white) colonies collected in the fall (September) and two sets collected in the spring (April). Analysis of the Sanger sequences revealed that the microbiome of A. poculata exhibited a high level of richness; 806 OTUs were identified among 1390 bacterial sequences. While the Illumina study revealed that A. poculata's microbial communities did not significantly vary according to symbiotic state, but did vary by season, Sanger sequencing did not expose seasonal or symbiotic differences in the microbiomes. Proteobacteria dominated the microbiome, forming the majority (55% to 80%) of classifiable bacteria in every sample, and the five bacterial classes with the highest mean relative portion (5% to 35%) were the same as those determined by prior Illumina sequencing. Sanger sequencing also captured the same core taxa previously identified by next-generation sequencing. Alignment of all sequences and construction of a phylogenetic tree revealed that both sequencing methods provided similar portrayals of the phylogenetic diversity within A. poculata's bacterial associates. Consistent with previous findings, the results demonstrated that the Astrangia microbiome is stable notwithstanding the choice of sequencing method and the far fewer sequences generated by clone libraries (46 to 326 sequences per sample) compared to next-generation sequencing (3634 to 48481 sequences per sample). Moreover, the near-full length 16S rRNA sequences produced by this study are presented as a resource for the community studying this model system since they provide necessary information for designing primers and probes to further our understanding of this coral's microbiome.

Details

ISSN :
24711888
Volume :
5
Issue :
1
Database :
OpenAIRE
Journal :
AIMS microbiology
Accession number :
edsair.pmid..........8a222ccd3cefa506292e407a5d6637ae