Back to Search Start Over

Transcriptional response of Erwinia amylovora to copper shock: in vivo role of the copA gene

Transcriptional response of Erwinia amylovora to copper shock: in vivo role of the copA gene

Authors :
Begoña, Águila-Clares
Luisa F, Castiblanco
José Miguel, Quesada
Ramón, Penyalver
Juan, Carbonell
María M, López
Ester, Marco-Noales
George W, Sundin
Source :
Molecular plant pathology. 19(1)
Publication Year :
2016

Abstract

Fire blight is a devastating plant disease caused by the bacterium Erwinia amylovora, and its control is frequently based on the use of copper‐based compounds whose mechanisms of action are not well known. Consequently, in this article, we investigate the response of E. amylovora to copper shock by a whole‐genome microarray approach. Transcriptional analyses showed that, in the presence of copper, 23 genes were increased in expression; these genes were classified mainly into the transport and stress functional categories. Among them, the copA gene was strongly induced and regulated in a finely tuned manner by copper. Mutation of copA, soxS, arcB, yjcE, ygcF, yhhQ, galF and EAM_3469 genes revealed that tolerance to copper in E. amylovora can be achieved by complex physiological mechanisms, including: (i) the control of copper homeostasis through, at least, the extrusion of Cu(I) by a P‐type ATPase efflux pump CopA; and (ii) the overcoming of copper toxicity caused by oxidative stress by the expression of several reactive oxygen species (ROS)‐related genes, including the two major transcriptional factors SoxS and ArcB. Furthermore, complementation analyses demonstrated the important role of copA for copper tolerance in E. amylovora, not only in vitro, but also in inoculated pear shoots.

Details

ISSN :
13643703
Volume :
19
Issue :
1
Database :
OpenAIRE
Journal :
Molecular plant pathology
Accession number :
edsair.pmid..........80f8e22ff9ab13481be7df4150356091