Back to Search Start Over

Robust background modelling in

Authors :
James M, Parkhurst
Graeme, Winter
David G, Waterman
Luis, Fuentes-Montero
Richard J, Gildea
Garib N, Murshudov
Gwyndaf, Evans
Source :
Journal of Applied Crystallography
Publication Year :
2016

Abstract

The application of a robust generalized linear model framework for the modelling of reflection backgrounds in X-ray diffraction images is described.<br />A method for estimating the background under each reflection during integration that is robust in the presence of pixel outliers is presented. The method uses a generalized linear model approach that is more appropriate for use with Poisson distributed data than traditional approaches to pixel outlier handling in integration programs. The algorithm is most applicable to data with a very low background level where assumptions of a normal distribution are no longer valid as an approximation to the Poisson distribution. It is shown that traditional methods can result in the systematic underestimation of background values. This then results in the reflection intensities being overestimated and gives rise to a change in the overall distribution of reflection intensities in a dataset such that too few weak reflections appear to be recorded. Statistical tests performed during data reduction may mistakenly attribute this to merohedral twinning in the crystal. Application of the robust generalized linear model algorithm is shown to correct for this bias.

Details

ISSN :
00218898
Volume :
49
Issue :
Pt 6
Database :
OpenAIRE
Journal :
Journal of applied crystallography
Accession number :
edsair.pmid..........7e65a0ee1385c50124bc5a9133eeb974