Back to Search Start Over

Interneurons of the ganglionic layer in the mormyrid electrosensory lateral line lobe: morphology, immunohistochemistry, and synaptology

Authors :
J, Meek
K, Grant
Y, Sugawara
T G, Hafmans
M, Veron
J P, Denizot
Source :
The Journal of comparative neurology. 375(1)
Publication Year :
1996

Abstract

This is the second paper in a series that describes the morphology, immunohistochemistry, and synaptology of the mormyrid electrosensory lateral line lobe (ELL). The ELL is a highly laminated cerebellum-like structure in the rhombencephalon that subserves an active electric sense: Objects in the nearby environment of the fish are detected on the basis of changes in the reafferent electrosensory signals that are generated by the animal's own electric organ discharge. The present paper describes interneurons in the superficial (molecular, ganglionic, and plexiform) layers of the ELL cortex that were analyzed in the light and electron microscopes after Golgi impregnation, intracellular labeling, neuroanatomical tracing, and gamma-aminobutyric acid (GABA) immunohistochemistry. The most numerous interneurons in the ganglionic layer are GABAergic medium-sized ganglionic (MG) cells and small ganglionic (SG) cells. MG cells have 10-20 spiny apical dendrites in the molecular layer, a cell body of 10-12 microns diameter in the ganglionic layer, a single basal dendrite that gives rise to fine, beaded, axon-like branches in either the plexiform layer (MG1 subtype) or the deeper granular layer (MG2 subtype), and an axon that terminates in the plexiform layer. Their apical dendritic tree has 12,000-22,000 spines that are contacted by GABA-negative terminals, and it receives, 1,250-2,500 GABA-positive contacts on the smooth dendritic surface between the spines. The average ratio of GABA-negative to GABA-positive contacts on the interneuron apical dendrites (14:1) is significantly higher than that for the efferent projection cells that have been described previously (Grant et al. [1996] J. Comp. Neurol., this issue). The somata and basal dendrites of MG cells receive a low to moderate density of GABAergic synaptic input, and their axons make GABAergic synaptic contacts with the somata and cell bodies of MG as well as with large ganglionic (LG) cells. SG cells probably represent immature, growing MG cells. Other interneurons in the superficial ELL layers include GABAergic stellate cells in the molecular layer, two types of non-GABAergic cells with smooth dendrites in the deep molecular layer that are named thick-smooth dendrite cells and deep molecular layer cells, and horizontal cells that are encountered particularly in the plexiform layer. Comparison with the ELL of waveform gymnotiform fish, which is another group of active electrolocating teleosts that has been investigated thoroughly, shows striking differences. In these fish, no GABAergic interneurons are found in the ganglionic (pyramidal) layer of the ELL, and GABA-negative interneurons with smooth dendrites in the molecular layer also seem to be lacking. At present, the phylogenetic origin of the described superficial interneurons in the mormyrid ELL is uncertain.

Details

ISSN :
00219967
Volume :
375
Issue :
1
Database :
OpenAIRE
Journal :
The Journal of comparative neurology
Accession number :
edsair.pmid..........7e57ff4b93bbf62ab099be2d74cdae42