Back to Search Start Over

Molecular mechanism of AMD3100 antagonism in the CXCR4 receptor: transfer of binding site to the CXCR3 receptor

Authors :
Mette M, Rosenkilde
Lars-Ole, Gerlach
Janus S, Jakobsen
Renato T, Skerlj
Gary J, Bridger
Thue W, Schwartz
Source :
The Journal of biological chemistry. 279(4)
Publication Year :
2003

Abstract

AMD3100 is a symmetric bicyclam, prototype non-peptide antagonist of the CXCR4 chemokine receptor. Mutational substitutions at 16 positions located in TM-III, -IV, -V, -VI, and -VII lining the main ligand-binding pocket of the CXCR4 receptor identified three acid residues: Asp(171) (AspIV:20), Asp(262) (AspVI:23), and Glu(288) (GluVII:06) as the main interaction points for AMD3100. Molecular modeling suggests that one cyclam ring of AMD3100 interacts with Asp(171) in TM-IV, whereas the other ring is sandwiched between the carboxylic acid groups of Asp(262) and Glu(288) from TM-VI and -VII, respectively. Metal ion binding in the cyclam rings of AMD3100 increased its dependence on Asp(262) and provided a tighter molecular map of the binding site, where borderline mutational hits became clear hits for the Zn(II)-loaded analog. The proposed binding site for AMD3100 was confirmed by a gradual build-up in the rather distinct CXCR3 receptor, for which the compound normally had no effect. Introduction of only a Glu at position VII:06 and the removal of a neutralizing Lys residue at position VII:02 resulted in a 1000-fold increase in affinity of AMD3100 to within 10-fold of its affinity in CXCR4. We conclude that AMD3100 binds through interactions with essentially only three acidic anchor-point residues, two of which are located at one end and the third at the opposite end of the main ligand-binding pocket of the CXCR4 receptor. We suggest that non-peptide antagonists with, for example, improved oral bioavailability can be designed to mimic this interaction and thereby efficiently and selectively block the CXCR4 receptor.

Details

ISSN :
00219258
Volume :
279
Issue :
4
Database :
OpenAIRE
Journal :
The Journal of biological chemistry
Accession number :
edsair.pmid..........6e490997eaf3e0d2d451f3cbd3c1a8b1