Back to Search Start Over

The Role of Local Triplet Excited States and D-A Relative Orientation in Thermally Activated Delayed Fluorescence: Photophysics and Devices

Authors :
Fernando B, Dias
Jose, Santos
David R, Graves
Przemyslaw, Data
Roberto S, Nobuyasu
Mark A, Fox
Andrei S, Batsanov
Tiago, Palmeira
Mário N, Berberan-Santos
Martin R, Bryce
Andrew P, Monkman
Source :
Advanced Science
Publication Year :
2016

Abstract

Here, a comprehensive photophysical investigation of a the emitter molecule DPTZ‐DBTO2, showing thermally activated delayed fluorescence (TADF), with near‐orthogonal electron donor (D) and acceptor (A) units is reported. It is shown that DPTZ‐DBTO2 has minimal singlet–triplet energy splitting due to its near‐rigid molecular geometry. However, the electronic coupling between the local triplet (3LE) and the charge transfer states, singlet and triplet, (1CT, 3CT), and the effect of dynamic rocking of the D–A units about the orthogonal geometry are crucial for efficient TADF to be achieved. In solvents with low polarity, the guest emissive singlet 1CT state couples directly to the near‐degenerate 3LE, efficiently harvesting the triplet states by a spin orbit coupling charge transfer mechanism (SOCT). However, in solvents with higher polarity the emissive CT state in DPTZ‐DBTO2 shifts below (the static) 3LE, leading to decreased TADF efficiencies. The relatively large energy difference between the 1CT and 3LE states and the extremely low efficiency of the 1CT to 3CT hyperfine coupling is responsible for the reduction in TADF efficiency. Both the electronic coupling between 1CT and 3LE, and the (dynamic) orientation of the D–A units are thus critical elements that dictate reverse intersystem crossing processes and thus high efficiency in TADF.

Details

ISSN :
21983844
Volume :
3
Issue :
12
Database :
OpenAIRE
Journal :
Advanced science (Weinheim, Baden-Wurttemberg, Germany)
Accession number :
edsair.pmid..........681f0ba634356ed80a082532ac7d10bf