Back to Search
Start Over
[Molecular mechanisms controlling the cell cycle: fundamental aspects and implications for oncology]
- Source :
- Cancer radiotherapie : journal de la Societe francaise de radiotherapie oncologique. 5(2)
- Publication Year :
- 2001
-
Abstract
- Comprehension of cell cycle regulation mechanisms has progressed very quickly these past few years and regulators of the cell cycle have gained widespread importance in cancer. This review first summarizes major advances in the understanding of the control of cell cycle mechanisms. Examples of how this control is altered in tumoral cells are then described.The typical mammalian cell cycle consists of four distinct phases occurring in a well-defined order, each of which should be completed successfully before the next begins. Progression of eukaryotic cells through major cell cycle transitions is mediated by sequential assembly and activation of a family of serine-threonine protein kinases, the cyclin dependent kinases (CDK). The timing of their activation is determined by their post-translational modifications (phosphorylations/dephosphorylations), and by the association of a protein called cyclin, which is the regulatory subunit of the kinase complex. The cyclin family is divided into two main classes. The 'G1 cyclins' include cyclins C, D1-3, and E, and their accumulation is rate-limiting for progression from the G1 to S phase. The 'mitotic or G2 cyclins', which include cyclin A and cyclin B, are involved in the control of G2/M transition and mitosis. The cyclins bind to and activate the CDK, which leads to phosphorylation (and then inhibition) of the tumor suppressor protein, pRb. pRb controls commitment to progress from the G1 to S phase, at least in part by repressing the activity of the E2F transcription factors known to promote cell proliferation. Both the D-type cyclins and their partner kinases CDK4/6 have proto-oncogenic properties, and their activity is carefully regulated at multiple levels including negative control by two families of CDK inhibitors. While members of the INK4 family (p16INK4A, p15INK4B, p18INK4C, p19INK4D) interact specifically with CDK4 and CDK6, the CIP/KIP inhibitors p21CIP1/WAF1, p27KIP1 and p57KIP2 inhibit a broader spectrum of CDK. The interplay between p16INK4A, cyclin D/CDK, and pRb/E2F together constitute a functional unit collectively known as the 'pRb pathway'. Each of the major components of this mechanism may become deregulated in cancer, and accumulating evidence points to the 'pRb pathway' as a candidate obligatory target in multistep oncogenesis of possibly all human tumor types.Major advances in the understanding of cell cycle regulation mechanisms provided a better knowledge of the molecular interactions involved in human cancer. This progress has led to the promotion of new therapeutic agents presently in clinical trials or under development. Moreover, the components of the cell cycle are probably involved in other non-cancerous diseases and their role must be defined.
- Subjects :
- Cyclin-Dependent Kinase Inhibitor p21
DNA Replication
Cell Cycle Proteins
Ataxia Telangiectasia Mutated Proteins
Saccharomyces cerevisiae
Protein Serine-Threonine Kinases
Retinoblastoma Protein
Mice
Cyclins
Animals
Humans
Genes, Retinoblastoma
Phosphorylation
Cyclin-Dependent Kinase Inhibitor p16
Mice, Knockout
Genes, p16
Tumor Suppressor Proteins
Cell Cycle
Genes, p53
Cyclin-Dependent Kinases
E2F Transcription Factors
Neoplasm Proteins
DNA-Binding Proteins
Cell Transformation, Neoplastic
Eukaryotic Cells
Gene Expression Regulation
Neoplastic Stem Cells
Tumor Suppressor Protein p53
Carrier Proteins
Microtubule-Associated Proteins
Protein Processing, Post-Translational
Transcription Factor DP1
Cyclin-Dependent Kinase Inhibitor p27
DNA Damage
Retinoblastoma-Binding Protein 1
Transcription Factors
Subjects
Details
- Language :
- French
- ISSN :
- 12783218
- Volume :
- 5
- Issue :
- 2
- Database :
- OpenAIRE
- Journal :
- Cancer radiotherapie : journal de la Societe francaise de radiotherapie oncologique
- Accession number :
- edsair.pmid..........67c3d0851dfbafa8e4a6324c31d91169