Back to Search Start Over

Breast tumors educate stromal tissue with individualized but coordinated proteomic signatures

Authors :
Wang, Xuya
Mooradian, Arshag D.
Erdmann-Gilmore, Petra
Zhang, Qiang
Viner, Rosa
Davies, Sherri R.
Huang, Kuan-lin
Bomgarden, Ryan
Van Tine, Brian A.
Shao, Jieya
Ding, Li
Li, Shunqiang
Ellis, Matthew J.
Rogers, John C.
Townsend, R. Reid
Fenyƶ, David
Held, Jason M.
Publication Year :
2017

Abstract

Cancer forms specialized microenvironmental niches that promote local invasion and colonization. Engrafted patient-derived xenografts (PDXs) locally invade and colonize naïve stroma in mice while enabling unambiguous molecular discrimination of human proteins in the tumor from mouse proteins in the microenvironment. To characterize how patient breast tumors form a niche and educate naïve stroma, subcutaneous breast cancer PDXs were globally profiled by species-specific quantitative proteomics. Regulation of PDX stromal proteins by breast tumors was extensive, with 35% of the stromal proteome altered by tumors consistently across different animals and passages. Differentially regulated proteins in the stroma clustered into six signatures, which included both known and previously unappreciated contributors to tumor invasion and colonization. Stromal proteomes were coordinately regulated; however, the sets of proteins altered by each tumor were highly distinct. Integrated analysis of tumor and stromal proteins, a comparison made possible in these xenograft models, indicated that the known hallmarks of cancer contribute pleiotropically to establishing and maintaining the microenvironmental niche of the tumor. Education of the stroma by the tumor is therefore an intrinsic property of breast tumors that is highly individualized, yet proceeds by consistent, nonrandom, and defined tumor-promoting molecular alterations.

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.pmid..........60e1e5e9cda74f2840d78ca6af33639a