Back to Search Start Over

Lung Cancer Cells Derived Circulating miR-21 Promotes Differentiation of Monocytes into Osteoclasts

Authors :
Qian, Zhao
Chang, Liu
Ying, Xie
Mengjia, Tang
Guojing, Luo
Xiang, Chen
Li, Tian
Xijie, Yu
Source :
OncoTargets and therapy
Publication Year :
2019

Abstract

Objective Osteoclastogenesis is a key process in osteolytic bone metastasis (BM). Previous studies indicated that some miRNAs could regulate cancers progression and osteoclastogenesis. Our purpose was to investigate the roles of lung cancer cells-derived circulating miR-21 on osteoclastogenesis and its clinical significance in BM patients. Materials and Methods The difference of miRNA expression in two lung cancer cell lines SBC-5 (with characteristic BM ability) and SBC-3 (without BM ability) were analyzed by microarray and qRT-PCR. Circulating miR-21 levels of lung cancer patients with or without BM were compared by qRT-PCR. The TRAP staining was used to investigate the effects of conditioned media from lung cancer cell lines or patients’ plasma with different miR-21 levels on osteoclastogenesis. ROC curve was used to evaluate the diagnostic performance of circulating miR-21 in BM patients. Results We found that miR-21 expression was specifically higher in SBC-5 than that in SBC-3 cells. The supernatants of SBC-5 cells with higher-level miR-21 promoted osteoclastogenesis. Moreover, we demonstrated that the circulating miR-21 level was significantly higher in BM patients than that in non-BM patients. The plasma from BM patients with higher-level miR-21 could also promote osteoclastogenesis. Mechanistically, lung cancer cells-derived circulating miR-21 could be transferred into osteoclast precursor cells and promote osteoclastogenesis probably by inhibiting PTEN. Finally, clinical data showed that circulating miR-21 had a potential for the diagnosis of BM. Conclusion Overall, our findings suggested that circulating miR-21 played important roles in osteoclastogenesis of lung cancer patients and may serve as a biomarker to diagnose BM of lung cancer.

Details

ISSN :
11786930
Volume :
13
Database :
OpenAIRE
Journal :
OncoTargets and therapy
Accession number :
edsair.pmid..........573d07afa5180b61cf90258a7e77ac05