Back to Search Start Over

ERG transcription factors have a splicing regulatory function involving RBFOX2 that is altered in the EWS-FLI1 oncogenic fusion

Authors :
Olivier, Saulnier
Katia, Guedri-Idjouadiene
Marie-Ming, Aynaud
Alina, Chakraborty
Jonathan, Bruyr
Joséphine, Pineau
Tina, O'Grady
Olivier, Mirabeau
Sandrine, Grossetête
Bartimée, Galvan
Margaux, Claes
Zahra, Al Oula Hassoun
Benjamin, Sadacca
Karine, Laud
Sakina, Zaïdi
Didier, Surdez
Sylvain, Baulande
Xavier, Rambout
Franck, Tirode
Martin, Dutertre
Olivier, Delattre
Franck, Dequiedt
Source :
Nucleic Acids Research
Publication Year :
2021

Abstract

ERG family proteins (ERG, FLI1 and FEV) are a subfamily of ETS transcription factors with key roles in physiology and development. In Ewing sarcoma, the oncogenic fusion protein EWS-FLI1 regulates both transcription and alternative splicing of pre-messenger RNAs. However, whether wild-type ERG family proteins might regulate splicing is unknown. Here, we show that wild-type ERG proteins associate with spliceosomal components, are found on nascent RNAs, and induce alternative splicing when recruited onto a reporter minigene. Transcriptomic analysis revealed that ERG and FLI1 regulate large numbers of alternative spliced exons (ASEs) enriched with RBFOX2 motifs and co-regulated by this splicing factor. ERG and FLI1 are associated with RBFOX2 via their conserved carboxy-terminal domain, which is present in EWS-FLI1. Accordingly, EWS-FLI1 is also associated with RBFOX2 and regulates ASEs enriched in RBFOX2 motifs. However, in contrast to wild-type ERG and FLI1, EWS-FLI1 often antagonizes RBFOX2 effects on exon inclusion. In particular, EWS-FLI1 reduces RBFOX2 binding to the ADD3 pre-mRNA, thus increasing its long isoform, which represses the mesenchymal phenotype of Ewing sarcoma cells. Our findings reveal a RBFOX2-mediated splicing regulatory function of wild-type ERG family proteins, that is altered in EWS-FLI1 and contributes to the Ewing sarcoma cell phenotype.

Details

ISSN :
13624962
Volume :
49
Issue :
9
Database :
OpenAIRE
Journal :
Nucleic acids research
Accession number :
edsair.pmid..........573266222422d779de9f5b7d8b42ed80