Back to Search
Start Over
Upregulation of the ATR-CHEK1 pathway in oral squamous cell carcinomas
- Source :
- Genes, chromosomescancer. 53(1)
- Publication Year :
- 2013
-
Abstract
- The ATR-CHEK1 pathway is upregulated and overactivated in Ataxia Telangiectasia (AT) cells, which lack functional ATM protein. Loss of ATM in AT confers radiosensitivity, although ATR-CHEK1 pathway overactivation compensates, leads to prolonged G(2) arrest after treatment with ionizing radiation (IR), and partially reverses the radiosensitivity. We observed similar upregulation of the ATR-CHEK1 pathway in a subset of oral squamous cell carcinoma (OSCC) cell lines with ATM loss. In the present study, we report copy number gain, amplification, or translocation of the ATR gene in 8 of 20 OSCC cell lines by FISH; whereas the CHEK1 gene showed copy number loss in 12 of 20 cell lines by FISH. Quantitative PCR showed overexpression of both ATR and CHEK1 in 7 of 11 representative OSCC cell lines. Inhibition of ATR or CHEK1 with their respective siRNAs resulted in increased sensitivity of OSCC cell lines to IR by the colony survival assay. siRNA-mediated ATR or CHEK1 knockdown led to loss of G(2) cell cycle accumulation and an increased sub-G(0) apoptotic cell population by flow cytometric analysis. In conclusion, the ATR-CHEK1 pathway is upregulated in a subset of OSCC with distal 11q loss and loss of the G(1) phase cell cycle checkpoint. The upregulated ATR-CHEK1 pathway appears to protect OSCC cells from mitotic catastrophe by enhancing the G(2) checkpoint. Knockdown of ATR and/or CHEK1 increases the sensitivity of OSCC cells to IR. These findings suggest that inhibition of the upregulated ATR-CHEK1 pathway may enhance the efficacy of ionizing radiation treatment of OSCC.
- Subjects :
- Chromosomes, Human, Pair 11
Gene Dosage
Ataxia Telangiectasia Mutated Proteins
Radiation Tolerance
Translocation, Genetic
Article
Up-Regulation
G2 Phase Cell Cycle Checkpoints
stomatognathic diseases
Cell Line, Tumor
Gene Knockdown Techniques
Checkpoint Kinase 1
Carcinoma, Squamous Cell
Humans
Mouth Neoplasms
Chromosomes, Human, Pair 3
biological phenomena, cell phenomena, and immunity
Protein Kinases
DNA Damage
Signal Transduction
Subjects
Details
- ISSN :
- 10982264
- Volume :
- 53
- Issue :
- 1
- Database :
- OpenAIRE
- Journal :
- Genes, chromosomescancer
- Accession number :
- edsair.pmid..........54d261f7d8205313f1a0dada82669e36