Back to Search Start Over

The effects of brefeldin A on the glucose transport system in rat adipocytes. Implications regarding the intracellular locus of insulin-sensitive Glut4

Authors :
S, Bao
R M, Smith
L, Jarett
W T, Garvey
Source :
The Journal of biological chemistry. 270(50)
Publication Year :
1995

Abstract

Insulin activates glucose transport by recruiting Glut4 glucose transporters from an intracellular pool to plasma membrane (PM). To localize intracellular translocating Glut4, we studied the effects of brefeldin A (BFA), which disassembles Golgi and prevents trans-Golgi vesicular budding, on the glucose transport system. Isolated rat adipocytes were treated with and without both BFA (10 micrograms/ml) and insulin. BFA did not affect maximal rates of either 2-deoxyglucose or 3-O-methyl-glucose transport or the insulin:glucose transport dose-response curve but did increase basal transport by approximately 2-fold (p0.05). We also measured Glut4 in PM, low (LDM) and high density microsome subfractions. In basal cells, BFA increased PM Glut4 by 58% concomitant with a 18% decrease in LDM (p0.05). Insulin alone increased PM Glut4 by 3-fold concomitant with a 56% decrease in LDM. BFA did not affect insulin-induced changes in Glut4 levels in PM or LDM. Most intracellular Glut4 was localized to sub-PM vesicles by immunoelectron microscopy in basal cells, and BFA did not affect insulin-mediated recruitment of immunogold-labeled Glut4 to PM. In summary, 1) in basal cells, BFA led to a small increase in glucose transport activity and redistribution of a limited number of transporters from LDM to PM; 2) BFA did not affect insulin's ability to stimulate glucose transport or recruit normal numbers of LDM Glut4 to PM; and 3) insulin action is predominantly mediated by a BFA-insensitive pool of intracellular Glut4, which localizes to sub-PM vesicles. Thus, the major translocating pool of Glut4 in rat adipocytes does not involve trans-Golgi.

Details

ISSN :
00219258
Volume :
270
Issue :
50
Database :
OpenAIRE
Journal :
The Journal of biological chemistry
Accession number :
edsair.pmid..........477b57a7203304581e6566b82adee764