Back to Search Start Over

Destruction and reconstruction of UO

Authors :
Michael J, Van Stipdonk
Evan H, Perez
Luke J, Metzler
Amanda R, Bubas
Theodore, Corcovilos
Arpad, Somogyi
Source :
Physical chemistry chemical physics : PCCP. 23(20)
Publication Year :
2021

Abstract

While the strong axial U[double bond, length as m-dash]O bonds confer high stability and inertness to UO22+, it has been shown that the axial oxo ligands can be eliminated or replaced in the gas-phase using collision-induced dissociation (CID) reactions. We report here tandem mass spectrometry experiments initiated with a gas-phase complex that includes UO22+ coordinated by a 2,6-difluorobenzoate ligand. After decarboxylation to form a difluorophenide coordinated uranyl ion, [UO2(C6F2H3)]+, CID causes elimination of CO, and then CO and C2H2 in sequential dissociation steps, to leave a reactive uranium fluoride ion, [UF2(C2H)]+. Reaction of [UF2(C2H)]+ with CH3OH creates [UF2(OCH3)]+, [UF(OCH3)2]+ and [UF(OCH3)2(CH3OH)]+. Cleavage of C-O bonds within these species results in the elimination of methyl cation (CH3+). Subsequent CID steps convert [UF(OCH3)2]+ to [UO2(F)]+ and similarly, [U(OCH3)3]+ to [UO2(OCH3)]+. Our experiments show removal of both uranyl oxo ligands in "top-down" CID reactions and replacement in "bottom-up" ion-molecule and dissociation steps.

Details

ISSN :
14639084
Volume :
23
Issue :
20
Database :
OpenAIRE
Journal :
Physical chemistry chemical physics : PCCP
Accession number :
edsair.pmid..........420a791757592e121b39c41930689d08