Back to Search Start Over

Adenovirus-mediated E2F-1 gene transfer sensitizes melanoma cells to apoptosis induced by topoisomerase II inhibitors

Authors :
Yan Bin, Dong
Hai Liang, Yang
Mary Jane, Elliott
Kelly M, McMasters
Source :
Cancer research. 62(6)
Publication Year :
2002

Abstract

Melanoma has proven to be resistant to conventional chemotherapy; however,the mechanism of chemoresistance is still unclear. Recent reports show that the transcription factor, E2F-1, may play a role in mediating cytotoxicity of certain chemotherapeutic agents. We have shown in a previous study that adenovirus-mediated overexpression of E2F-1 can efficiently induce apoptosis in melanoma cells. In the present study, the effect of E2F-1 expression on drug sensitivity of melanoma cells was evaluated. Two human melanoma cell lines, SK-MEL-28 and SK-MEL-2, were treated with drugs (etoposide, Adriamycin, roscovitine, cisplatin, 5-fluorouracil, or cycloheximide), alone or in combination with adenoviral vectors expressing beta-galactosidase (Ad-LacZ) or E2F-1 (Ad-E2F-1) at a multiplicity of infection of 1 in vitro. E2F-1 expression was confirmed by Western blot analysis. Sublethal concentrations of each drug alone or infection with Ad-E2F-1 alone produced5% apoptosis by 3 days posttreatment. Conversely, cotreatment with Ad-E2F-1 and low concentrations of etoposide or Adriamycin markedly sensitized melanoma cells to apoptotic cell death. A slight enhancement of the cytotoxicity of roscovitine was demonstrated in combination with E2F-1 overexpression, but not to cisplatin, 5-fluorouracil, or cycloheximide. Ad-LacZ infection showed no obvious effects on drug sensitivity. Overexpression of p21 can block apoptosis induced by the combination chemogene therapy of Ad-E2F-1 and topoisomerase II poisons and does not require its proliferating cell nuclear antigen-binding ability. The protein synthesis inhibitor cycloheximide also has a cytotoxicity-protective effect against topoisomerase II inhibitor/E2F-1-induced apoptosis and suggests that new protein synthesis is required for this process. Topoisomerase II inhibitors also cooperated with Ad-E2F-1 to enhance antitumor activity in an in vivo model using xenografts in nude mice. When combined with Adriamycin or etoposide, E2F-1 adenovirus therapy resulted in an 87% or 91% decrease in tumor size, respectively, compared with controls (P0.002). Our results show that adenovirus-mediated E2F-1 gene transfer can sensitize melanoma cells to some chemotherapeutic agents, particularly topoisomerase II poisons, in vitro and in vivo. These results suggest a new chemosensitization strategy for melanoma gene therapy.

Details

ISSN :
00085472
Volume :
62
Issue :
6
Database :
OpenAIRE
Journal :
Cancer research
Accession number :
edsair.pmid..........38d1e8264b15ae433b70678bc2755d5b