Back to Search
Start Over
Identification of SPRR3 as a novel atheroprotective factor that promotes adaptive Akt signaling in VSMCs
- Publication Year :
- 2014
-
Abstract
- Atherosclerosis is the primary driver of cardiovascular disease, the leading cause of death worldwide. Identification of naturally occurring atheroprotective genes has become a major goal for the development of interventions that will limit atheroma progression and associated adverse events. To this end, we have identified small proline-rich repeat protein (SPRR3) as selectively upregulated in vascular smooth muscle cells (VSMCs) of atheroma-bearing arterial tissue versus healthy arterial tissue. In this study, we sought to determine the role of SPRR3 in atheroma pathophysiology.We found that atheroprone apolipoprotein E-null mice lacking SPRR3 developed significantly greater atheroma burden. To determine the cellular driver(s) of this increase, we evaluated SPRR3-dependent changes in bone marrow-derived cells, endothelial cells, and VSMCs. Bone marrow transplant of SPRR3-expressing cells into SPRR3(-/-)apolipoprotein E-deficient recipients failed to rescue atheroma burden. Similarly, endothelial cells did not exhibit a response to SPRR3 loss. However, atheromas from SPRR3-deficient mice exhibited increased TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling)-positive VSMCs compared with control. Cell death in SPRR3-deficient VSMCs was significantly increased in vitro. Conversely, SPRR3-overexpressing VSMCs exhibited reduced apoptosis compared with control. We also observed a PI3K (phosphatidylinositol 3-kinase)/Akt-dependent positive association between SPRR3 expression and levels of active Akt in VSMCs. The survival advantage seen in SPRR3-overexpressing VSMCs was abrogated after the addition of a PI3K/Akt pathway inhibitor.These results indicate that SPRR3 protects the lesion from VSMC loss by promoting survival signaling in plaque VSMCs, thereby significantly decreasing atherosclerosis progression. As the first identified atheroma-specific VSMC prosurvival factor, SPRR3 represents a potential target for lesion-specific modulation of VSMC survival.
- Subjects :
- Male
Mice, Knockout
Cell Survival
Macrophages
Myocytes, Smooth Muscle
Endothelial Cells
Apoptosis
Atherosclerosis
Adaptation, Physiological
Article
Plaque, Atherosclerotic
Mice, Inbred C57BL
Mice
Apolipoproteins E
Cornified Envelope Proline-Rich Proteins
Disease Progression
Animals
Female
Phosphorylation
Proto-Oncogene Proteins c-akt
Cell Proliferation
Signal Transduction
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Accession number :
- edsair.pmid..........24c632e6e65e2c8fb2272f50b8825780