Back to Search Start Over

Iterative structure-based improvement of a respiratory syncytial virus fusion glycoprotein vaccine

Authors :
Joyce, M. Gordon
Zhang, Baoshan
Ou, Li
Chen, Man
Chuang, Gwo-Yu
Druz, Aliaksandr
Kong, Wing-Pui
Lai, Yen-Ting
Rundlet, Emily J.
Tsybovsky, Yaroslav
Yang, Yongping
Georgiev, Ivelin S.
Guttman, Miklos
Lees, Christopher R.
Pancera, Marie
Sastry, Mallika
Soto, Cinque
Stewart-Jones, Guillaume B.E.
Thomas, Paul V.
Van Galen, Joseph G.
Baxa, Ulrich
Lee, Kelly K.
Mascola, John R.
Graham, Barney S.
Kwong, Peter D.
Source :
Nature structural & molecular biology
Publication Year :
2016

Abstract

Structure-based design of vaccines, particularly the iterative optimization used so successfully in the structure-based design of drugs, has been a long-sought goal. We previously developed a first-generation vaccine antigen called DS-Cav1, comprising a prefusion-stabilized form of the fusion (F) glycoprotein, which elicits high-titer protective responses against respiratory syncytial virus (RSV) in mice and macaques. Here we report the improvement of DS-Cav1 through iterative cycles of structure-based design that significantly increased the titer of RSV-protective responses. The resultant second-generation 'DS2'-stabilized immunogens have their F subunits genetically linked, their fusion peptides deleted and their interprotomer movements stabilized by an additional disulfide bond. These DS2 immunogens are promising vaccine candidates with superior attributes, such as their lack of a requirement for furin cleavage and their increased antigenic stability against heat inactivation. The iterative structure-based improvement described here may have utility in the optimization of other vaccine antigens.

Details

Language :
English
ISSN :
15459985 and 15459993
Volume :
23
Issue :
9
Database :
OpenAIRE
Journal :
Nature structural & molecular biology
Accession number :
edsair.pmid..........11324c052f23381be5b2910e4ac3ab92