Back to Search
Start Over
Chronic intracerebral prolactin attenuates neuronal stress circuitries in virgin rats
- Source :
- The European journal of neuroscience. 25(6)
- Publication Year :
- 2007
-
Abstract
- Prolactin (PRL) has been shown to promote maternal behaviour, and to regulate neuroendocrine and emotional stress responses. These effects appear more important in the peripartum period, when the brain PRL system is highly activated. Here, we studied the mechanisms that underlie the anti-stress effects of PRL. Ovariectomized, estradiol-substituted Wistar rats were implanted with an intracerebroventricular cannula and treated with ovine PRL (0.01, 0.1 or 1 microg/h; 5 days via osmotic minipumps) or vehicle, and their responses to acute restraint stress was assessed. Chronic PRL treatment exerted an anxiolytic effect on the elevated plus-maze, and attenuated the acute restraint-induced rise in plasma adrenocorticotropin, corticosterone and noradrenaline. At the neuronal level, in situ hybridization revealed PRL effects on the expression patterns of the immediate-early gene c-fos and corticotropin-releasing factor (CRF). Under basal conditions, PRL significantly reduced c-fos mRNA expression within the central amygdala. In response to restraint, the expression of both c-fos mRNA and protein and of CRF mRNA was decreased in the parvocellular part of the paraventricular nucleus (PVN) of PRL-treated compared with vehicle-treated animals. In conclusion, our data demonstrate that chronic elevation of PRL levels within the brain results in reduced neuronal activation within the hypothalamus, specifically within the PVN, in response to an acute stressor. Thus, PRL acting at various relevant brain regions exerts profound anxiolytic and anti-stress effects, and is likely to contribute to the attenuated stress responsiveness found in the peripartum period, when brain PRL levels are physiologically upregulated.
- Subjects :
- Neurons
Behavior, Animal
Dose-Response Relationship, Drug
Estradiol
Corticotropin-Releasing Hormone
Ovariectomy
Brain
Drug Administration Schedule
Prolactin
Rats
Norepinephrine
Adrenocorticotropic Hormone
Anti-Anxiety Agents
Gene Expression Regulation
Animals
Female
Rats, Wistar
Corticosterone
Maze Learning
Proto-Oncogene Proteins c-fos
In Situ Hybridization
Stress, Psychological
Injections, Intraventricular
Subjects
Details
- ISSN :
- 0953816X
- Volume :
- 25
- Issue :
- 6
- Database :
- OpenAIRE
- Journal :
- The European journal of neuroscience
- Accession number :
- edsair.pmid..........015d9b4066f7b2e36b8340d2960ff74c