Back to Search Start Over

Phase transformations in Ni/Ti multilayers investigated by synchrotron radiation-based x-ray diffraction

Authors :
Cavaleiro, A. J.
Ramos, A. S.
Martins, R. M. S.
Braz Fernandes, F. M.
Morgiel, J.
Baehtz, C.
Vieira, M. T.
Source :
Journal of Alloys and Compounds 645(2015), 1165-1171
Publication Year :
2015

Abstract

X-ray diffraction using synchrotron radiation was used for real-time investigation of the phase evolution of Ni/Ti multilayer thin films during annealing. These multilayers were deposited onto Tie6Ale4V substrates by dc magnetron sputtering from pure Ni and Ti targets. The deposition parameters were adjusted in order to obtain a near equiatomic chemical composition and modulation periods (L) below 25 nm. Along the entire thickness of the films, well-defined structures with alternate Ni- and Ti-rich layers are observed, even for L ¼ 4 nm. In this case, a halo characteristic of an amorphous structure is obtained, while for L of 12 and 25 nm the as-deposited thin films are nanocrystalline being possible to identify the (111) Ni and (002) Ti diffraction peaks. The nanolayered structure vanishes during annealing due to interdiffusion followed by reaction. The reaction between Ni and Ti to produce NiTi in the cubic B2 structure occurs in a short delay of time and within a narrow temperature range. For L of 25, 12 and 4 nm, the reaction temperature is close to 320, 350 and 385 C, respectively. For higher temperatures, in addition to the austenitic phase, the NiTi2 phase is identified. The diffusion of Ti from the substrate and Ni towards the substrate could favour the precipitation of NiTi2.

Details

Language :
English
Database :
OpenAIRE
Journal :
Journal of Alloys and Compounds 645(2015), 1165-1171
Accession number :
edsair.od......4577..473712e55d9dcf96e42805053e07fdbb