Back to Search Start Over

High-pressure chemistry of hydrocarbons relevant to planetary interiors and inertial confinement fusion

Authors :
Kraus, D.
Hartley, N. J.
Frydrych, S.
Schuster, A. K.
Rohatsch, K.
Brown, S.
Cowan, T. E.
Cunningham, E.
Demaio-Turner, S. J.
Driel, T.
Fletcher, L. B.
Galtier, E.
Gamboa, E. J.
Laso Garcia, A.
Gericke, D. O.
Granados, E.
Heimann, P. A.
Lee, H. J.
Macdonald, M. J.
Mackinnon, A. J.
Mcbride, E. E.
Nam, I.
Neumayer, P.
Pak, A.
Pelka, A.
Prencipe, I.
Ravasio, A.
Redmer, R.
Rödel, M.
Saunders, A. M.
Schölmerich, M.
Schörner, M.
Sun, P.
Falcone, R. W.
Glenzer, S. H.
Döppner, T.
Vorberger, J.
Source :
Physics of Plasmas 25(2018)5, 056313
Publication Year :
2018

Abstract

Diamond formation in polystyrene (C8H8)n, which is laser-compressed and heated to conditions around 150 GPa and 5,000 K, has recently been demonstrated in the laboratory [D. Kraus et al., Nat. Astron. 1, 606-611 (2017)]. Here we show an extended analysis of the acquired data and their implications for planetary physics and inertial confinement fusion. Moreover, we discuss the advanced diagnostic capabilities of adding high-quality small angle X-ray scattering and spectrally resolved X-ray scattering to the platform, which shows great prospects of precisely studying the kinetics of chemical reactions in dense plasma environments at pressures exceeding 100 GPa.

Details

Language :
English
Database :
OpenAIRE
Journal :
Physics of Plasmas 25(2018)5, 056313
Accession number :
edsair.od......4577..0f58e1850cb1320503cf12e6a0e6201a