Back to Search Start Over

Bayesian Beta regression for the estimation of the Gini concentration coefficient in small domains

Authors :
Fabrizi, Enrico
TRIVISANO, CARLO
Crocetta, Corrado
Fabrizi, Enrico
Trivisano, Carlo
Publication Year :
2015
Publisher :
country:ITA, 2015.

Abstract

La stima dell’indice di concentrazione di Gini per il reddito, i consumi o altre variabili economiche a livello di piccole aree `e uno strumento utile per analizzare il livello di disuguaglianza all’interno di territori circoscritti. La letteratura sulla stima per piccole aree che riguarda questo indicatore `e tuttavia limitata e basata su un’impostazione i cui presupposti non sono soddifatti in molti contesti concreti di stima. In questo lavoro proponiamo un metodo di stima per piccole aree basato su una modellazione a livello di area. Poich´e questo metodo presuppone che lo stimatore diretto sia approssimativamente corretto, proponiamo una correzione dello stimatore da disegno dell’indice di Gini in domini di studio che ne riduce la distorsione nei piccoli domini. Il modello di piccole aree che illustriamo utilizzando dati dell’indagine EU-SILC `e una regressione mista basata su una verosimiglianza. Beta. L’inferenza sul modello `e condotta secondo un’impostazione Bayesiana The Gini coefficient is a popular concentration measure often used in the analysis of economic inequality. Estimates of this index for small regions may be useful to properly represent inequalities within local communities. The literature on small area estimation for the Gini coefficient is limited. In this paper, we propose a method based on area-level models, thereby not assuming the availability of Census data at the micro-level. We propose a modified design-based estimator for the coefficient with reduced small sample bias and we consider a hierarchical Beta mixed regression model to combine survey data and auxiliary information. The methodology is illustrated by means of an example based on Italian data from the EU-SILC survey.

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.od......4094..c363a3c8e2f2a8a802aa0846f3af1780