Back to Search Start Over

Detecting cerebral palsy in neonatal stroke children: GNN-based detection considering the structural organization of basal ganglia

Authors :
Coupeau, Patty
Fasquel, Jean-Baptiste
Démas, Josselin
Hertz-Pannier, Lucie
Dinomais, Mickael
Laboratoire Angevin de Recherche en Ingénierie des Systèmes (LARIS)
Université d'Angers (UA)
Centre Hospitalier de Laval (CH Laval)
Unité de recherche en NeuroImagerie Applicative Clinique et Translationnelle (UNIACT)
Service NEUROSPIN (NEUROSPIN)
Université Paris-Saclay-Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
Maladies neurodéveloppementales et neurovasculaires (NeuroDiderot (UMR_S_1141 / U1141))
Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris Cité (UPCité)
CEA- Saclay (CEA)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
Département de Médecine Physique et de Réadaptation , CHU Angers , Angers , France.
IEEE
Source :
IEEE 20th ISBI 2023-20th International Symposium on Biomedical Imaging 2023, IEEE 20th ISBI 2023-20th International Symposium on Biomedical Imaging 2023, IEEE, Apr 2023, Cartagena de Indias, Colombia
Publication Year :
2023
Publisher :
HAL CCSD, 2023.

Abstract

International audience; As a long-term consequence of neonatal arterial ischaemic stroke (NAIS), the presence of cerebral palsy (CP) depends on the structural integrity of brain areas, especially of basal ganglia. Yet, it remains challenging to establish an early diagnosis of CP from a conventional structural MRI. In this study, we introduce a graph neural network-based classification for the recognition of NAIS children and mainly for the detection of children with CP among the NAIS ones. From the structural MRI of 68 children aged 7 years old and their corresponding segmentation of basal ganglia, we construct graphs where nodes represent structures, carrying on node and edge attributes structural information (volumes, distances). The classification accuracy achieved by the proposed method is of 86% for the detection of NAIS and of 89% for the detection of CP among neonatal stroke children.

Details

Language :
English
Database :
OpenAIRE
Journal :
IEEE 20th ISBI 2023-20th International Symposium on Biomedical Imaging 2023, IEEE 20th ISBI 2023-20th International Symposium on Biomedical Imaging 2023, IEEE, Apr 2023, Cartagena de Indias, Colombia
Accession number :
edsair.od......3515..c4ddd5a3fe201e8c64eacba2b9eb61ca