Back to Search Start Over

VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS IN PROPER CAT(0) SPACES

Authors :
JERHAOUI, Othmane
Zidani, Hasnaa
Optimisation et commande (OC)
Unité de Mathématiques Appliquées (UMA)
École Nationale Supérieure de Techniques Avancées (ENSTA Paris)-École Nationale Supérieure de Techniques Avancées (ENSTA Paris)
École Nationale Supérieure de Techniques Avancées (ENSTA Paris)
Laboratoire de Mathématiques de l'INSA de Rouen Normandie (LMI)
Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie)
Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)
This word was partially supported by grant from the Foundation of mathematics Jacques Hadamard (FMJH)
ANR-22-CE40-0010,COSS,COntrôle sur des Structures Stratifiées(2022)
European Project: ERDF
Publication Year :
2022
Publisher :
HAL CCSD, 2022.

Abstract

In this article, we develop a novel notion of viscosity solutions for first order Hamilton-Jacobi equations in proper CAT(0) spaces. The notion of viscosity is defined by taking test functions that are directionally differentiable and can be represented as a difference of two semiconvex functions. Under mild assumptions on the Hamiltonian, we recover the main features of viscosity theory for both the stationary and the time-dependent cases in this setting: the comparison principle and Perron's method. Finally, we show that this notion of viscosity coincides with classical one in R N and we give several examples of Hamilton-Jacobi equations in more general CAT(0) spaces covered by this setting.

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.od......3379..9a314462daee452cc6d30d3c430223e7