Back to Search Start Over

Transaction Scheduling: From Conflicts to Runtime Conflicts

Authors :
Cao, Yang
Fan, Wenfei
Ou, Weijie
Xie, Rui
Zhao, Wenyue
Source :
Cao, Y, Fan, W, Ou, W, Xie, R & Zhao, W 2023, ' Transaction Scheduling: From Conflicts to Runtime Conflicts ', Proceedings of the ACM on Management of Data, vol. 1, no. 1, 26, pp. 1-26 . https://doi.org/10.1145/3603164
Publication Year :
2023

Abstract

This paper studies how to improve the performance of main memory multicore OLTP systems for executing transactions with conflicts. A promising approach is to partition transaction workloads into mutually conflict-free clusters, and distribute the clusters to different cores for concurrent execution. We show that if transactions in each cluster are properly scheduled, transactions that are traditionally considered conflicting can be executed without conflicts at runtime. In light of this, we propose to schedule transactions and reduce runtime conflicts, instead of partitioning based on the conventional notion of conflicts. We formulate the transaction scheduling problem to minimize runtime conflicts, and show that the problem is NP-complete. This said, we develop an effcient scheduling algorithm to improve parallelism. Moreover, for transactions that are not packed in batches, we show that runtime conflict analysis also helps reduce conflict penalties, by proposing a proactive deferring method. Using standard and enhanced benchmarks, we show that on average our scheduling and proactive deferring methods improve the throughput of existing partitioners and concurrency control protocols by 131% and 109%, respectively, up to 294% and 152%.

Details

Language :
English
Database :
OpenAIRE
Journal :
Cao, Y, Fan, W, Ou, W, Xie, R & Zhao, W 2023, ' Transaction Scheduling: From Conflicts to Runtime Conflicts ', Proceedings of the ACM on Management of Data, vol. 1, no. 1, 26, pp. 1-26 . https://doi.org/10.1145/3603164
Accession number :
edsair.od......3094..5f87d960addca97edf914bbf1ffac5c1