Back to Search Start Over

Idiosyncratic volatility: an analysis of aggregate and Individual effects

Authors :
Carolina Magda da Silva Roma
Robert Aldo Iquiapaza Coaguila
Hudson Fernandes Amaral
Aureliano Angel Bressan
Wagner Moura Lamonier
Clayton Peixoto Goulart
Herbert Kimura
Source :
Repositório Institucional da UFMG, Universidade Federal de Minas Gerais (UFMG), instacron:UFMG
Publication Year :
2017
Publisher :
Universidade Federal de Minas Gerais, 2017.

Abstract

This work is focused on the study of idiosyncratic risk at the aggregate and firm-level and its effect on returns. For that analysis we use a model-free measure, namely the cross-sectional variance (CSV), easily obtained at any frequency, as proposed in Garcia, Mantilla-García, and Martellini (2014). This measure was employed in the U.S. and Brazilian stock markets using equal- and value-weighted market returns, at daily and monthly frequencies. For U.S. stocks, first the main findings in the aforementioned authors’ work were replicated and their sample was extended until December 2014. The results relative to these estimations imply that aggregate idiosyncratic volatility is still positive and significant in predicting equal- and value-weighted market returns. In a second moment, credit ratings of firms rated by Standard & Poor’s were used to construct a CSV measure according to the firm’s credit quality into investment grade, non-investment grade and all rated firms. The analysis relying on CSV by levels of ratings pointed out to the relevance of monthly value-weighted measures in predicting market returns in the whole sample. Using Brazilian stocks from January 2000 to June 2016, the behavior of CSV was investigated as a proxy to idiosyncratic variance over time and its predictive power to forecast market returns throughout the whole timespan, subperiods, up and down markets, expansion and recession periods as well testing its power with the inclusion of market variance, investor sentiment, aggregate dividend yield and expected and unexpected measures of illiquidity. It was also analyzed whether that measure can predict risk factors omitted from the CAPM model as presented in Carhart (1997) and Fama and French (2015) five-factor model. Overall, these findings suggest that the firm-specific risk aggregated over the stocks in the sample is not able to robustly predict market returns or risk factors. Using credit ratings of Brazilian firms showed to be very limited due to the number of rated companies, therefore a new CSV based on ratings or the stock’s market capitalization (size) were constructed; however, these approaches also do not corroborate the idea that aggregate idiosyncratic variance is useful in predicting market returns. After that, attention was focused on understanding the cross-sectional effects of expected idiosyncratic volatility and expected return using an EGARCH model developed by Nelson (1991) and a Skewed – Generalized Error Distribution (Skew-GED). Portfolios were formed based only on expected idiosyncratic risk and controlling for other characteristics which have been shown to affect the stock return, specifically size, book-to-market, momentum and reversal return applying Ang et al.’s (2006) methodology to account for these variables in a double sorting procedure. The abnormal returns generated by these portfolios, in general, are not statistically significant when controlling for other characteristics. Fama and MacBeth (1973) cross-sectional regressions to evaluate the relation between expected returns and expected idiosyncratic volatility controlling for portfolio beta, market capitalization, book-to-market, turnover, momentum, coefficient of variation of turnover, and lagged return were run. Using the three different models consistently suggest that expected idiosyncratic volatility is not related to expected returns when the forward-looking return observation is not included in the estimations supporting Fink, Fink and He (2012) results. Este trabalho tem como foco o estudo do risco idiossincrático nos níveis agregado e da firma e seu efeito sobre os retornos. Para essa análise, usamos uma medida independente de modelos, nomeadamente a variância cross-sectional (cross-sectional variance, CSV), facilmente obtida em qualquer frequência, como proposto em Garcia, Mantilla-García e Martellini (2014). Essa medida foi empregada nos mercados de ações dos Estados Unidos e Brasil usando retornos de mercado igualmente ponderados e por capitalização de mercado, nas frequências diária e mensal. Para ações dos Estados Unidos, primeiro os resultados principais do trabalho dos autores previamente mencionados foram replicados e sua amostra foi expandida até Dezembro 2014. Os resultados relativos a essas estimações implicam que a volatilidade idiossincrática agregada é ainda positiva e significante para prever retornos de mercado igualmente ponderados e por capitalização de mercado. Em um segundo momento, ratings de crédito de firmas rateadas pela Standard & Poor’s foram usados para construir a medida CSV de acordo com a qualidade de crédito da firma em grau de investimento, especulativo e todas as firmas rateadas. As análises sobre a CSV por níveis de ratings apontaram a relevância das medidas mensais com capitalização de mercado para prever retornos de mercado na amostra completa. Usando ações brasileiras de janeiro de 2000 até junho de 2016, o comportamento da CSV foi investigado como uma proxy para a variância idiossincrática ao longo do tempo e seu poder preditivo para prever retornos de mercado durante todo o período de tempo, subperíodos, mercados em alta e baixa, períodos de expansão e recessão, como também seu poder foi testado com a inclusão da variância de mercado, sentimento do investidor, dividend yield agregado e medidas de iliquidez esperada e inesperada. Também foi analisado se a medida pode prever fatores de risco omitidos do modelo CAPM, como apresentado em Carhart (1997) e no modelo de cinco fatores de Fama e French (2015). De maneira geral, esses resultados sugerem que o risco específico da firma agregado sobre as ações na amostra não é capaz de robustamente prever retornos de mercado ou fatores de risco. Usando ratings de crédito de firmas brasileiras mostrou-se muito limitado devido ao número de companhias avaliadas, assim uma nova CSV baseada em ratings ou na capitalização de mercado da ação (tamanho) foram construídas; contudo, essas abordagens também não corroboram a ideia de que a variância idiossincrática agregada é útil em prever retornos de mercado. Depois disso, a atenção foi focada no entendimento dos efeitos cross-sectional da volatilidade idiossincrática esperada e retornos esperados usando o modelo EGARCH desenvolvido por Nelson (1991) e a Distribuição Generalizada do Erro – Assimétrica (Skewed – Generalized Error Distribution, Skew-GED). Portfólios foram formados baseados somente no risco idiossincrático esperado e controlando por outras características que têm mostrado afetar o retorno da ação, especificamente tamanho, valor patrimonial/valor de mercado, momento e reversão do retorno aplicando a metodologia de Ang et al. (2006) para considerar essas variáveis em um procedimento de sorteio bivariado. Os retornos anormais gerados por esses portfólios, em geral, não são estatisticamente significantes quando controlando por outras características. Regressões cross-section de Fama e MacBeth (1973) para avaliar a relação entre retornos esperados e volatilidade idiossincrática

Details

Language :
Portuguese
Database :
OpenAIRE
Journal :
Repositório Institucional da UFMG, Universidade Federal de Minas Gerais (UFMG), instacron:UFMG
Accession number :
edsair.od......3056..49e140f6943c9d3909a0802f3c6e8437