Back to Search Start Over

Image processing as an auxiliary methodology for analysis of thermograms

Authors :
Schadeck, Cezar Augusto
Ulbricht, Leandra
Ganacim, Francisco Itamarati Secolo
Passos, Adriano Gonçalves dos
Ripka, Wagner Luis
Source :
Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)), Universidade Tecnológica Federal do Paraná (UTFPR), instacron:UTFPR
Publication Year :
2020
Publisher :
Universidade Tecnológica Federal do Paraná, 2020.

Abstract

Esta dissertação trata de um estudo sobre processamento de imagens com o intuito de automatizar o método de análise de termogramas de pacientes com suspeita diagnóstica de câncer. Atualmente, existem diversos exames por imagem que são utilizados para a triagem ou auxílio no diagnóstico complementar de tumores. No caso da mama, por exemplo, são realizados os exames de mamografia, ultrassonografia e, mais raramente, ressonância magnética. Para quadros da tireoide os exames de palpação, cintilografia e ultrassonografia são realizados. Também é adotado o exame por punção aspirativa com agulha fina para a realização da biópsia, que é considerada padrão ouro no diagnóstico de câncer. Em contraste, por se tratar de uma técnica não invasiva, a termografia tem sido amplamente estudada complementar no diagnóstico precoce de neoplasias. Os exames termográficos captam alterações de temperatura devido ao aumento da atividade metabólica na região comprometida. Contudo, a análise dos termogramas é em muitos casos é feita de forma visual, dependendo totalmente da percepção do examinador. Dessa forma, o objetivo desse trabalho é desenvolver um programa interativo de segmentação semiautomática para ROI contida em um termograma. Como metodologia foi desenvolvida uma rotina de segmentação, em linguagem Python, a partir de um algoritmo baseado em crescimento de regiões, capaz de agrupar pixels semelhantes para uma região do termograma. Assim, a partir desse pixel, é possível verificar a homogeneidade ou semelhança dos seus pixels vizinhos para captar regiões com alteração de temperatura nos tecidos analisados. Como resultados, são apresentados a área segmentada de forma semiautomática comparada com um método manual de delimitação de imagens térmicas, o tempo operacional médio foi de 16 segundos para o método proposto, contra 40 segundos aproximados de análise manual. Através da ferramenta desenvolvida, a região segmentada pode ser comparada com uma região circunvizinha a fim de comprovar diferença térmica entre os tecidos sadio e não sadio (com tumor). O programa também apresenta uma planilha com dados térmicos exportada diretamente do programa, explicitando as faixas de temperatura delimitadas pela ferramenta, para facilitar posteriores análises ou para fornecer informação para o prontuário médico. Os testes foram realizados em 20 termogramas coletados de pacientes com neoplasia da mama e tireoide, seguindo o protocolo de coleta e tratamento de imagens térmicas, e todos apresentaram temperaturas mínimas e médias delimitadas pelo método proposto superiores às encontradas pelo método manual. As comparações entre as regiões delimitadas de todos os vinte termogramas também evidenciaram que as temperaturas na região nodular eram superiores às dos tecidos vizinhos não comprometidos. This paper presents a study on image processing used in order to automate the method of analyzing thermograms of patients with suspected cancer diagnosis. Currently, there are several imaging tests that are used to do the triage of the patients, or to help in the complementary diagnosis of tumors. In the case of the breast, as an example, mammography, ultrasound and, more rarely, MRI scans can be performed. As for thyroid cases, palpation, scintigraphy and ultrasound examinations are performed. To performe the biopsy, the medical exam that can be used is the aspiration puncture with a fine needle, which is considered the gold standard in the diagnosis of cancer. On the other hand, since it is a non-invasive technique, thermography has been widely used in a complementary way in the early diagnosis of neoplasms. Thermographic exams can capture changes in temperature due to increased metabolic activity in the affected region. However, the analysis of thermograms in most of cases is done visually, depending entirely on the examiner’s perception. Thus, the objective of this work is to develop an interactive semiautomatic segmentation program for ROI contained in a thermogram. Therefore, a segmentation routine was developed, in Python language, from an algorithm based on region growth, capable of grouping similar pixels for a region of the thermogram. Thereby, from that pixel, it is possible to check the homogeneity or similarity of its neighboring pixels to capture regions with temperature changes in the analyzed tissues. As results, the segmented area is presented in a semi-automatic way when compared with a manual method of delimiting thermal images, and the average operational time was 16 seconds for the proposed method, against approximately 40 seconds of manual analysis. Making use of the developed tool, the segmented region can be compared with a surrounding region in order to prove thermal differences between healthy and non-healthy tissues (tissues with tumor). A spreadsheet with thermal data, exported directly from the program, is also presented, explaining the temperature ranges delimited by the tool that can be used to facilitate further analysis or to provide information for the medical record. The tests were carried out on 20 thermograms collected from patients with breast and thyroid cancer, following the protocol for collecting and treating thermal images, and they all presented minimum and average temperatures delimited by the proposed method, higher than those found by the manual method. Comparisons between the delimited regions of all twenty thermograms also showed that the temperatures in the nodular region were higher than those of neighboring non-compromised tissues.

Details

Language :
Portuguese
Database :
OpenAIRE
Journal :
Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)), Universidade Tecnológica Federal do Paraná (UTFPR), instacron:UTFPR
Accession number :
edsair.od......3056..3d6ed7d796318fe263d186e8455386e4