Back to Search Start Over

Visões em bancos de dados de grafos : uma abordagem multifoco para dados heterogêneos

Authors :
Daltio, Jaudete, 1983
Medeiros, Claudia Maria Bauzer, 1954
Salgado, Ana Carolina Brandão
Ciferri, Ricardo Rodrigues
Santanchè, André
Telles, Guilherme Pimentel
Universidade Estadual de Campinas. Instituto de Computação
Programa de Pós-Graduação em Ciência da Computação
UNIVERSIDADE ESTADUAL DE CAMPINAS
Source :
Biblioteca Digital de Teses e Dissertações da Universidade Estadual de Campinas (UNICAMP), Universidade Estadual de Campinas (UNICAMP), instacron:UNICAMP
Publication Year :
2017

Abstract

Orientador: Claudia Maria Bauzer Medeiros Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Computação Resumo: A pesquisa científica tornou-se cada vez mais dependente de dados. Esse novo paradigma de pesquisa demanda técnicas e tecnologias computacionais sofisticadas para apoiar tanto o ciclo de vida dos dados científicos como a colaboração entre cientistas de diferentes áreas. Uma demanda recorrente em equipes multidisciplinares é a construção de múltiplas perspectivas sobre um mesmo conjunto de dados. Soluções atuais cobrem vários aspectos, desde o projeto de padrões de interoperabilidade ao uso de sistemas de gerenciamento de bancos de dados não-relacionais. Entretanto, nenhum desses esforços atende de forma adequada a necessidade de múltiplas perspectivas, denominadas focos nesta tese. Em termos gerais, um foco é projetado e construído para atender um determinado grupo de pesquisa (mesmo no escopo de um único projeto) que necessita manipular um subconjunto de dados de interesse em múltiplos níveis de agregação/generalização. A definição e criação de um foco são tarefas complexas que demandam mecanismos capazes de manipular múltiplas representações de um mesmo fenômeno do mundo real. O objetivo desta tese é prover múltiplos focos sobre dados heterogêneos. Para atingir esse objetivo, esta pesquisa se concentrou em quatro principais problemas. Os problemas inicialmente abordados foram: (1) escolher um paradigma de gerenciamento de dados adequado e (2) elencar os principais requisitos de pesquisas multifoco. Nossos resultados nos direcionaram para a adoção de bancos de dados de grafos como solução para o problema (1) e a utilização do conceito de visões, de bancos de dados relacionais, para o problema (2). Entretanto, não há consenso sobre um modelo de dados para bancos de dados de grafos e o conceito de visões é pouco explorado nesse contexto. Com isso, os demais problemas tratados por esta pesquisa são: (3) a especificação de um modelo de dados de grafos e (4) a definição de um framework para manipular visões em bancos de dados de grafos. Nossa pesquisa nesses quatro problemas resultaram nas contribuições principais desta tese: (i) apontar o uso de bancos de dados de grafos como camada de persistência em pesquisas multifoco - um tipo de banco de dados de esquema flexível e orientado a relacionamentos que provê uma ampla compreensão sobre as relações entre os dados; (ii) definir visões para bancos de dados de grafos como mecanismo para manipular múltiplos focos, considerando operações de manipulação de dados em grafos, travessias e algoritmos de grafos; (iii) propor um modelo de dados para grafos - baseado em grafos de propriedade - para lidar com a ausência de um modelo de dados pleno para grafos; (iv) especificar e implementar um framework, denominado Graph-Kaleidoscope, para prover o uso de visões em bancos de dados de grafos e (v) validar nosso framework com dados reais em aplicações distintas - em biodiversidade e em recursos naturais - dois típicos exemplos de pesquisas multidisciplinares que envolvem a análise de interações de fenômenos a partir de dados heterogêneos Abstract: Scientific research has become data-intensive and data-dependent. This new research paradigm requires sophisticated computer science techniques and technologies to support the life cycle of scientific data and collaboration among scientists from distinct areas. A major requirement is that researchers working in data-intensive interdisciplinary teams demand construction of multiple perspectives of the world, built over the same datasets. Present solutions cover a wide range of aspects, from the design of interoperability standards to the use of non-relational database management systems. None of these efforts, however, adequately meet the needs of multiple perspectives, which are called foci in the thesis. Basically, a focus is designed/built to cater to a research group (even within a single project) that needs to deal with a subset of data of interest, under multiple ggregation/generalization levels. The definition and creation of a focus are complex tasks that require mechanisms and engines to manipulate multiple representations of the same real world phenomenon. This PhD research aims to provide multiple foci over heterogeneous data. To meet this challenge, we deal with four research problems. The first two were (1) choosing an appropriate data management paradigm; and (2) eliciting multifocus requirements. Our work towards solving these problems made as choose graph databases to answer (1) and the concept of views in relational databases for (2). However, there is no consensual data model for graph databases and views are seldom discussed in this context. Thus, research problems (3) and (4) are: (3) specifying an adequate graph data model and (4) defining a framework to handle views on graph databases. Our research in these problems results in the main contributions of this thesis: (i) to present the case for the use of graph databases in multifocus research as persistence layer - a schemaless and relationship driven type of database that provides a full understanding of data connections; (ii) to define views for graph databases to support the need for multiple foci, considering graph data manipulation, graph algorithms and traversal tasks; (iii) to propose a property graph data model (PGDM) to fill the gap of absence of a full-fledged data model for graphs; (iv) to specify and implement a framework, named Graph-Kaleidoscope, that supports views over graph databases and (v) to validate our framework for real world applications in two domains - biodiversity and environmental resources - typical examples of multidisciplinary research that involve the analysis of interactions of phenomena using heterogeneous data Doutorado Ciência da Computação Doutora em Ciência da Computação CAPES CNPQ FAPESP 2013/08293-7

Details

Database :
OpenAIRE
Journal :
Biblioteca Digital de Teses e Dissertações da Universidade Estadual de Campinas (UNICAMP), Universidade Estadual de Campinas (UNICAMP), instacron:UNICAMP
Accession number :
edsair.od......3056..33214bbb376f03b80586e9c77fbbc40b