Back to Search
Start Over
Uma hiper-heurística híbrida para a otimização de algorítmos
- Source :
- Repositório Institucional da UFPE, Universidade Federal de Pernambuco (UFPE), instacron:UFPE
- Publication Year :
- 2016
- Publisher :
- Universidade Federal de Pernambuco, 2016.
-
Abstract
- A escolha de algoritmos ou heurísticas para a resolução de um dado problema é uma tarefa desafiadora devido à variedade de possíveis escolhas de variações/configurações de algoritmos e a falta de auxílio em como escolhê-las ou combiná-las. Por exemplo, o desempenho de algoritmo de otimização depende da escolha dos seus operadores de busca e do ajuste adequado de seus hiper-parâmetros, cada um deles com muitas possibilidades de opções a serem escolhidas. Por este motivo, existe um interesse de pesquisa crescente na automatização da otimização de algoritmos de modo a tornar esta tarefa mais independente da interação humana. Diferentes abordagens têm lidado com a tarefa de ajuste de algoritmos como sendo outro problema de (meta)otimização. Estas abordagens são comumente chamadas de hiper-heurísticas, onde cada solução do espaço de busca, neste caso, é um possível algoritmo avaliado em um dado problema. Inicialmente, hiper-heurísticas foram aplicadas na seleção de valores de hiper-parâmetros em um espaço de busca pré-definido e limitado. No entanto, recentemente, hiper-heurísticas têm sido desenvolvidas para gerar algoritmos a partir de componentes e funções especificados. Hiperheurísticas de geração são consideradas mais flexíveis que as de seleção devido à sua capacidade de criar algoritmos novos e personalizados para um dado problema. As hiper-heurísticas têm sido largamente utilizadas na otimização de meta-heurísticas. No entanto, o processo de busca torna-se bastante custoso, pois a avaliação das soluções trata-se da execução do algoritmo no problema de entrada. Neste trabalho, uma nova hiper-heurística foi desenvolvida para a otimização de algoritmos considerando um dado problema. Esta solução visa prover algoritmos otimizados que sejam adequados para o problema dado e reduzir o custo computacional do processo de geração significativamente quando comparado ao de outras hiper-heurísticas. A hiper-heurística proposta combina uma abordagem de seleção de algoritmos com uma hiper-heurística de geração. A hiperheurística de geração é responsável por criar uma base de conhecimento, que contém algoritmos que foram gerados para um conjunto de problemas. Uma vez que esta base de conhecimento esteja disponível, ela é usada como fonte de algoritmos a serem recomendados pela abordagem de seleção de algoritmos. A ideia é reusar algoritmos previamente construídos pela hiper-heurística de geração em problemas similares. Vale salientar que a criação de hiper-heurísticas visando reduzir o custo de geração de algoritmos sem comprometer a qualidade destes algoritmos não foi estudada na literatura. Além disso, hiper-heurísticas híbridas que combinam de abordagens de seleção de algoritmos e hiper-heurísticas de geração para a otimização de algoritmos, proposta nesta tese, é novidade. Para avaliar o algoritmo proposto, foi considerada como estudo de caso a otimização do algoritmo baseado em enxames (PSO). Nos experimentos realizados, foram considerados 32 problemas de otimização. O algoritmo proposto foi avaliado quanto à sua capacidade de recomendar bons algoritmos para problemas de entrada, se estes algoritmos atingem resultados competitivos frente à literatura. Além disso, o sistema foi avaliado quanto à sua precisão na recomendação, ou seja, se o algoritmo recomendado seria, de fato, o melhor a ser selecionado. Os resultados mostraram que a hiper-heurística proposta é capaz de recomendar algoritmos úteis para os problemas de entrada e de forma eficiente. Adicionalmente, os algoritmos recomendados atingiram resultados competitivos quando comparados com algoritmos estado da arte e a recomendação dos algoritmos atingiu um alto percentual de precisão. Designing an algorithm or heuristic to solve a given problem is a challenging task due to the variety of possible design choices and the lack of clear guidelines on how to choose and/or combine them. For instance, the performance of an optimization algorithm depends on the designofitssearchoperatorsaswellasanadequatesettingofspecifichyper-parameters,eachof them with many possible options to choose from. Because of that, there is a growing research interest in automating the design of algorithms by exploring mainly optimization and machine learningapproaches,aimingtomakethealgorithmdesignprocessmoreindependentfromhuman interaction. Different approaches have dealt with the task of optimizing algorithms as another (meta)optimization problem. These approaches are commonly called hyper-heuristics, where each solution of the search space is a possible algorithm. Initially, hyper-heuristics were applied for the selection of parameters in a predefined and limited search space. Nonetheless, recently, generation hyper-heuristics have been developed to generate algorithms from a set of specified components and functions. Generation hyper-heuristics are considered more flexible than the selection ones due to its capacity to create new and customized algorithms for a given problem. Hyper-heuristics have been widely used for the optimization of meta-heuristics. However, the search process becomes expensive because the evaluation of each solution depends on the execution of an algorithm in a problem. In this work, a novel hyper-heuristic was developed to optimize algorithms considering a given problem. The proposed approach aims to provide optimizedalgorithmsfortheinputproblemandreducethecomputationalcostoftheoptimization process significantly when compared to other hyper-heuristics. The proposed hyper-heuristics combines an automated algorithm selection method with a generation hyper-heuristic. The generation hyper-heuristic is responsible for the creation of the knowledge base, which contains previously built algorithms for a set of problems. Once the knowledge base is available, it is used as a source of algorithms to be recommended by the automated algorithm selection method. The idea is to reuse the algorithms already built by the generation hyper-heuristic on similar problems. It is worth mentioning that the creation of hyper-heuristics aiming to reduce the cost of the algorithm generation without harming the quality of these algorithms were not studied yet. Besides, hybrid hyper-heuristics which combine an algorithm selection approach with a generation hyper-heuristic for the algorithm optimization, proposed in this thesis, are a novelty. To evaluate the proposed algorithm, it was considered as case study the optimization of the Particle Swarm Optimization algorithm (PSO). In our experiments, we considered 32 optimizationproblems.Theproposedsystemwasevaluatedregardingitscapacitytorecommend adequate algorithms for an input problem, the quality of the recommended algorithms, and, finally, regarding its accuracy to recommend algorithms. The results showed that the proposed system recommends useful algorithms for the input problem. Besides, the algorithms achieved competitive results when compared to state-of-the-art algorithms, and also, the system presented a high percentage of accuracy in the recommendation.
Details
- Language :
- Portuguese
- Database :
- OpenAIRE
- Journal :
- Repositório Institucional da UFPE, Universidade Federal de Pernambuco (UFPE), instacron:UFPE
- Accession number :
- edsair.od......3056..26064f2afa21e3a5c2c7feec14f195e9