Back to Search Start Over

Quantitative Approach of Ultraweak Bio-Chemiluminescence : Oxidation and Metabolism

Authors :
Khaoua, Ibtissame
STAR, ABES
Center for Soft and Living Matter
Institute for Basic Science (IBS)
Pusan National University-Pusan National University
Université Paris-Saclay
François Amblard
Source :
Autre [q-bio.OT]. Université Paris-Saclay, 2020. Français. ⟨NNT : 2020UPASL005⟩
Publication Year :
2020
Publisher :
HAL CCSD, 2020.

Abstract

It has been known for decades that ultra-weak visible and UV light is emitted by most living tissues due to their oxidative metabolism, as well as by some simple reactions in aqueous medium. However, these phenomena are not well known due to the extreme weakness of the light emission, hence called "ultra-weak" luminescence. In this thesis, we propose an original experimental setup to make extremely sensitive measurements of the luminescence produced by a sample per unit volume.We reached a detection limit of ≈ 1 photon s−1cm−3 which corresponds to ≈ 2.10−21 M.s−1. To obtain this result, we combined: 1) the darkest environment possible, 2) an integrating sphere with extreme reflectivity which brings the maximum amount of photons onto the detector, 3) an amplified camera in binary mode (visible : 400 − 900) and a statistical model which optimizes detectivity, and 4) a semi-automatic procedure to operate in darkness. This setup enables the following: 1) the detection limit is ≈ 9.2 photons s−1cm−2 on the camera, which accounts for ≈ 1% of its dark current, 2) ≈ 12% of the photons emitted isotropically by the sample are detected, 3) measurement of light intensity variations is optimized by maximizing the detectivity, rather than by maximiz- ing the signal-to-noise ratio.Then, we studied the luminescence produced by the disproportionation of H2O2 in water. This reaction catalysed in cells by peroxidases, is important for the metabolism, and is critical to the understanding chemiluminescence in general and and luminol-based applications in particular. We quantified for the first time without a catalyst, the dose-dependent luminescence of the disproportionation reaction in pure water, with ≈ 15photonss−1cm−3 for [H2O2 = 90] mM. Using a well-known biological model, Saccharomyces cerevisiae (baker’s yeast), cultured in liquid, we showed a peak in the luminescence associated with the beginning of the exponential growth phase, followed by a sustained decrease over 10 hours. This light production represents approximately 10−5 photons per second per cell.We hope our work leads to better quantitative study of the ultra-weak luminescence in chemistry and biology. This quantification is necessary for understanding the fundamental underlying mechanisms behind luminescence and to develop chemical and biomedical applications.<br />L’émission de lumière par les tissus vivants, probablement liée au métabolisme oxydatif, est connue depuis des décennies, tout comme la luminescence de certaines réactions chimiques très simples en milieu aqueux. Ces phénomènes restent très mal connus en raison de l’extrême faiblesse de lumière produite, appelée de ce fait "luminescence ultrafaible". Dans cette thèse, nous proposons d’abord un dispositif expérimental original pour quantifier avec une très grande sensibilité la luminescence produite par unité de volume de l’échantillon.Le seuil de détection atteint est ≈ 1 photon s−1 cm−3 soit ≈ 2.10−21 M.s−1 . Nous avons pour cela combiné : 1) un environnement d’obscurité maximale, 2) une sphère intégrante de réflexivité extrême pour canaliser au maximum les photons de l’échantillon vers le détecteur, 3) une caméra amplifiée en mode binaire dans le domaine visible (400 − 900) et un modèle statistique conduisant à une détectivité optimale, et 4) une procédure semi-automatique de manipulation dans l’obscurité.Grace à ce dispositif, 1) le seuil de détection est ≈ 9.2 photons s−1cm−2 sur la caméra, soit ≈ 1% du courant d’obscurité, 2) ≈ 12% des photons émis de façon isotrope par l’échantillon sont détectés, 3) la détection des variations de l’intensité lumineuse est optimisée en opérant non pas au maximum du rapport signal à bruit, mais au maximum de détectivité. Nous avons ensuite étudié la luminescence produite par la disproportionation de H2O2 dans l’eau, réaction importante pour le métabolisme et catalysée par les peroxidases, mais essentielle aussi dans l’histoire de la chimiluminescence pour la compréhension fondamentale et ses applications basées sur le luminol. Nous avons quantifié pour la première fois, en absence de tout catalyseur, la luminescence dose-dépendante de la disproportionation dans l’eau pure, avec ≈ 15 photons s−1cm−3 pour [H2O2] = 90 mM. Grace au modèle biologique bien connu des levures Saccharomyces cerevisiae, nous avons mis en évidence un pic de luminescence en culture liquide associé au début de la phase exponentielle, suivi d’une décroissance sur 10 heures. Cette production de lumière représente environ 10−5 par seconde et par cellule.Notre travail permet d’envisager l’étude beaucoup plus quantitative de la luminescence ultrafaible en chimie et en biologie, condition nécessaire pour la com- préhension des mécanismes fondamentaux impliqués et le développement de possibles applications notamment biomédicales.

Details

Language :
French
Database :
OpenAIRE
Journal :
Autre [q-bio.OT]. Université Paris-Saclay, 2020. Français. ⟨NNT : 2020UPASL005⟩
Accession number :
edsair.od......2592..aebd2689219dd40b6cf7626a820386cb