Back to Search
Start Over
Earthquake Diffusion Variations in the Western Gulf of Corinth (Greece)
- Publication Year :
- 2021
-
Abstract
- Earthquake diffusion and the migration behaviour of seismic clusters are commonly studied to provide insight on the spatiotemporal evolution of seismicity and the interplaying driving mechanisms. Using a high-resolution relocated catalogue, we study the variations of the earthquake diffusion rates in the Western Gulf of Corinth during 2013-2014, a period with abundant local seismicity, including intense microseismic background, seismic swarms and mainshock-aftershock sequences. We treat earthquake occurrence as a point process in time and space and estimate the diffusion rates of the main seismic sequences and the background seismicity in terms of normalized spatial histograms and the evolutions of the mean squared distance of seismicity with time. The statistical analysis of the studied seismic sequences reveals that the mean squared distance of the hypocentres increases slowly with time, at a much lower rate than for a normal diffusion process. Such findings confirm previous results on weak earthquake diffusion, analogous to subdiffusion, in regional and clustered seismicity. In addition, seismic swarms associated with pore fluid pressure diffusion present considerably higher diffusion exponents compared to mainshock-aftershock-type sequences that are consistent with primary or secondary stress triggering effects and stress corrosion. The observed variations of the earthquake diffusion rates indicate the stochastic nature of the phenomenon and may provide novel constraints on the triggering mechanisms of clustered seismic activity in the Western Gulf of Corinth and in other seismically active regions.
- Subjects :
- Physics::Geophysics
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Accession number :
- edsair.od......2127..a4d538d7a5db8a98b4ac560637d4c55f