Back to Search Start Over

Malignancy grade-dependent mapping of metabolic landscapes in human urothelial bladder cancer: Identification of novel, diagnostic, and druggable biomarkers

Authors :
Iliou, A. Panagiotakis, A. Giannopoulou, A.F. Benaki, D. Kosmopoulou, M. Velentzas, A.D. Tsitsilonis, O.E. Papassideri, I.S. Voutsinas, G.E. Konstantakou, E.G. Gikas, E. Mikros, E. Stravopodis, D.J.
Publication Year :
2020

Abstract

Background: Urothelial bladder cancer (UBC) is one of the cancers with the highest mortality rate and prevalence worldwide; however, the clinical management of the disease remains challenging. Metabolomics has emerged as a powerful tool with beneficial applications in cancer biology and thus can provide new insights on the underlying mechanisms of UBC progression and/or reveal novel diagnostic and therapeutic schemes. Methods: A collection of four human UBC cell lines that critically reflect the different malignancy grades of UBC was employed; RT4 (grade I), RT112 (grade II), T24 (grade III), and TCCSUP (grade IV). They were examined using Nuclear Magnetic Resonance, Mass Spectrometry, and advanced statistical approaches, with the goal of creating new metabolic profiles that are mechanistically associated with UBC progression toward metastasis. Results: Distinct metabolic profiles were observed for each cell line group, with T24 (grade III) cells exhibiting the most abundant metabolite contents. AMP and creatine phosphate were highly increased in the T24 cell line compared to the RT4 (grade I) cell line, indicating the major energetic transformation to which UBC cells are being subjected during metastasis. Thymosin β4 and β10 were also profiled with grade-specific patterns of expression, strongly suggesting the importance of actin-cytoskeleton dynamics for UBC advancement to metastatic and drug-tolerant forms. Conclusions: The present study unveils a novel and putatively druggable metabolic signature that holds strong promise for early diagnosis and the successful chemotherapy of UBC disease. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.

Subjects

Subjects :
fungi

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.od......2127..16fa11b82fe3cb2243176ccc4f8cb2ac