Back to Search Start Over

Dermatophytes’ identification by Matrix-assisted laser desorption ionization-time of flight mass spectrometry. (MALDI-TOF MS) - the experience of a clinical laboratory

Authors :
Verissimo, C.
Simões, H.
Sabino, R.
Simões, D.
Publication Year :
2019

Abstract

Objectives: Dermatophytes are a challenging group of fungi that infect the keratinized tissues. The taxonomy of these fungi has changed recently with the reclassification of some species and description of new ones. However, many clinical laboratories still base the identification of dermatophytes on their phenotype. Since dermatophytes are very pleomorphic, macro and micromorphology are often insufficient to reach a correct classification and may lead to misidentifications. The identification based on MALDI-TOF relies on the protein profile of the microorganism. Thus, this study aims to summarize our current laboratorial experience of dermatophyte identification using MALDI-TOF MS. Methods: From january to april 2018, 95 dermatophytes isolates, collected from human keratinized samples and also from quality control programs were characterized by phenotypic analysis, and by VITEK MS V3.2 bioMerieux. Before identification procedure, isolates were inoculated on Sabouraud Dextrose agar plates and incubated at 27°C during 5 to 10 days. Species were identified taking into account clinical features, as well as cultural, microscopic and physiological characteristics. Prior to MALDI-TOF MS analysis, the samples were pre-treated according to the manufacturer’s protocol for filamentous fungi. Molecular identification by sequencing of the internal transcribed spacer 1 (ITS1) was performed in 34 of those isolates Results: Through phenotypic analysis eight different species were identified (54 Trichophyton rubrum; 4 T.soudanense; 22 T.interdigitale; 1 T.mentagrophytes; 3 T.tonsurans; 7 Microsporum canis; 3 M.audouinii; 1 Microsporum spp.- (non canis or audouinii). MALDI-TOF analysis showed an identification agreement in 80 cases (84,2%) with a confidence level of 99,9%. Eight isolates showed divergent identification results: three T.rubrum were identified as T.violaceum, three T.soudanense were identified as T.rubrum, one T.mentagrophytes was identified as T.interdigitale and one T.tonsurans was identified as T.rubrum. In four cases MALDI-TOF analysis did not get a profile. The ITS sequencing analysis of discrepant results corroborated the MALDI-TOF identification in five of them. On the other hand, T.soudanense was only identified by phenotypic analysis since MALDI-TOF and ITS sequencing result was T.rubrum. MALDITOF identification of T.violaceum was not confirmed by ITS sequencing that identified T. rubrum instead, in accordance with the phenotypic identification. Conclusion: Correct identification of dermatophytes to species level requires sequencing of the ITS, LSU, and/or betatubulin regions. The implementation of this methodology in a clinical laboratory is expensive and time consuming. MALDI-TOF identification is a good option for dermatophytes’ identification performed in laboratory routine, since costs of consumables as well as time of sample preparation are lower than for PCR analysis and doesn’t require long training period as phenotypic identification does. In this study, however, both methods failed to identify some species variants like Trichophyton soudanense or T. violaceum. The combined use of both MALDI-TOF and phenotypic methods seems to be the better approach for dermatophytes’ identification since some species show significant phenotypic and clinical differences. info:eu-repo/semantics/publishedVersion

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.od......2016..5885d2477b037d98e7a50460e183ca75