Back to Search
Start Over
Photocatalytic mechanism control and study of carrier dynamics in CdS@C₃N₅ core–shell nanowires
- Publication Year :
- 2022
- Publisher :
- American Chemical Society, 2022.
-
Abstract
- We present a potential solution to the problem of extraction of photogenerated holes from CdS nanocrystals and nanowires. The nanosheet form of C₃N₅ is a low-band-gap (Eg = 2.03 eV), azo-linked graphenic carbon nitride framework formed by the polymerization of melem hydrazine (MHP). C₃N₅ nanosheets were either wrapped around CdS nanorods (NRs) following the synthesis of pristine chalcogenide or intercalated among them by an in situ synthesis protocol to form two kinds of heterostructures, CdS-MHP and CdS-MHPINS, respectively. CdS-MHP improved the photocatalytic degradation rate of 4-nitrophenol by nearly an order of magnitude in comparison to bare CdS NRs. CdS-MHP also enhanced the sunlight-driven photocatalytic activity of bare CdS NWs for the decolorization of rhodamine B (RhB) by a remarkable 300% through the improved extraction and utilization of photogenerated holes due to surface passivation. More interestingly, CdS-MHP provided reaction pathway control over RhB degradation. In the absence of scavengers, CdS-MHP degraded RhB through the N-deethylation pathway. When either hole scavenger or electron scavenger was added to the RhB solution, the photocatalytic activity of CdS-MHP remained mostly unchanged, while the degradation mechanism shifted to the chromophore cleavage (cycloreversion) pathway. We investigated the optoelectronic properties of CdS-C₃N₅ heterojunctions using density functional theory (DFT) simulations, finite difference time domain (FDTD) simulations, time-resolved terahertz spectroscopy (TRTS), and photoconductivity measurements. TRTS indicated high carrier mobilities >450 cm² V⁻¹ s⁻¹ and carrier relaxation times >60 ps for CdS-MHP, while CdS-MHPINS exhibited much lower mobilities
Details
- Language :
- English
- Database :
- OpenAIRE
- Accession number :
- edsair.od......1674..4ff5b1071749404f9c5afc65cd8ef01c
- Full Text :
- https://doi.org/10.1021/acsami.1c08550