Back to Search Start Over

Flowering under stress: phenomics and proteomics approaches to chickpea grain yield and quality

Authors :
Pinheiro, Carla
Duarte, Isabel
Guerra-Guimarães, Leonor
Ribeiro, Isa C.
Carvalho, Mª Graça
Planchon, Sébastien
Renaut, Jenny
Roitsch, Thomas
Publication Year :
2023

Abstract

Chickpea (Cicer arietinum) is a major player in the FAO Zero Hunger program “toolkit”. It is the second most cultivated food legume, a source of sustainable protein (and other nutrients) and contributes to improved soil health and lower fertilization input. Grain yield, seed protein content and nutritional quality were found to be largely affected by Genotype x Environment. In the Mediterranean regions, higher frequency, intensity and duration of droughts, as well as hotter droughts are being registered, thus interfering with agroecosystems’ structure, composition, and functions. A controlled conditions assay (non-invasive phenotyping@PhenoLab) was undertaken in two genotypes from the Portuguese chickpea breeding program (Elvas, INIAV). Results revealed that high temperature (32º C during the reproductive phase) and water regime (40% vs 10% soil water content) play a significant role in chickpea development, seed production and composition, and protein content. As seed biochemical signatures allow to discriminate between genotypes, the power protein-based methodologies in genotype assessment are highlighted. Because some proteins can resist gastrointestinal digestion and influence human health, the processed seed proteome (i.e. following soaking, boiling and in-vitro digestion) in three consecutive years was further analysed in field-grown chickpeas (Elvas, INIAV). The seed proteome was found to be highly conserved, with minor changes being attributed to the seed development conditions. Furthermore, in vitro digestion efficiently removed many anti-nutritional proteins. Combined phenotyping and omic´s approaches contribute to the mechanistic knowledge of how severe terminal drought and high temperature modulate sink capacity and productivity (yield and quality). The integrated use of phenomics and omics methodologies has significant potential to increase our understanding of plant growth and development and, thus, an efficient, knowledge-based management of crops and resources. Work supported by EMPHASIS-GO (HORIZON-INFRA-2021-DEV-02 contract n. 101079772), by the European Plant Phenotyping Network 2020 (EXCELLENT SCIENCE - Research Infrastructures contract n. 731013) and by national funds from FCT - Fundação para a Ciência e a Tecnologia, I.P. namelly: UCIBIO – Research Unit on Applied Molecular Biosciences (FCT UIDP/04378/2020; FCT UIDB/04378/ 2020); 4HB - Associate Laboratory Institute for Health and Bioeconomy (FCT LA/P/0140/2020); LEAF – Linking Landscape, Environment, Agriculture and Food (FCT UID/AGR/04129/2020); PhD fellowship SFRH/BD/70345/2010. info:eu-repo/semantics/publishedVersion

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.od......1503..86e5812154e5e4cac4c78a578a02d312