Back to Search
Start Over
Análise comparada da segmentação e classificação orientada por objectos de uma imagem de alta resolução WORLDVIEW-2
- Publication Year :
- 2013
- Publisher :
- Faculdade de Ciências Sociais e Humanas, Universidade Nova de Lisboa, 2013.
-
Abstract
- Dissertação de Mestrado em Gestão do Território, Especialização em Detecção Remota e Sistemas de Informação Geográfica A Detecção Remota é uma ciência e uma técnica com grande valor na área da gestão do território, em particular das cidades, auxiliando os decisores, nomeadamente na alimentação de dados para sistemas de apoio à decisão, na observação e na monitorização da superfície terrestre. A presente dissertação de mestrado teve por objectivo geral o processamento de imagens de alta resolução espacial e espectral, usando para tal uma imagem de satélite WorldView-2. Os objectivos específicos compreendem o ensaio de diferentes abordagens de classificação. Numa primeira fase, procedeu-se à classificação da imagem com aproximação ao pixel, de forma supervisionada, pelo algoritmo random forests. Numa segunda fase, executou-se a segmentação da imagem, pelo software IDRISI Taiga, seguida da classificação de segmentos utilizando o algoritmo nearest neighbor e depois o algoritmo random forests. Numa terceira fase procedeu-se à segmentação da imagem por objectos, com o eCognition 8.0, pelo algoritmo multiresolution, classificando-os posteriormente também pelo algoritmo nearest neighbor. Por fim, foi realizada uma avaliação de exactidão dos resultados das diferentes abordagens, discutindo a sua aplicabilidade na classificação de imagens de áreas urbanas densas, efectuando-se uma análise comparada das mesmas. A área de estudo seleccionada foi uma área da cidade de Lisboa compreendendo, sobretudo, as designadas “Avenidas Novas”. Tal como a grande maioria das áreas urbanas, esta área apresenta também uma grande heterogeneidade espectral facto que permitiu avaliar a influência dessa característica na aplicação de diferentes métodos de classificação. A classificação com maior valor para a exactidão global (EG) e índice de concordância Kappa é a orientada por objectos, com valores entre os 63.6 e 90.7% e os 0.60 e 0.81, respectivamente para os diferentes níveis da nomenclatura hierarquizada. As outras classificações obtiveram valores similares entre si que variam entre os 56.9% e 87.5% para EG e 0.53 e 0.72 para Kappa. A dissertação insere-se num contexto de continuidade de uma série de trabalhos de detecção remota urbana liderados pelo Professor José António Tenedório, realizados no âmbito do Grupo de Modelação Geográfica, Cidades e Ordenamento do Território do e-GEO, Centro de Estudos de Geografia e Planeamento Regional, da Faculdade de Ciências Sociais e Humanas da Universidade Nova de Lisboa; assim como de outras equipas internacionais em matéria de processamento digital de imagens de satélite aplicado à cidade.
- Subjects :
- Deteção remota
Orientada por objectos
Segmentação
Pixel
Classificação
Alta Resolução
Subjects
Details
- Language :
- Portuguese
- Database :
- OpenAIRE
- Accession number :
- edsair.od......1437..72ce8cec9abbcbf13bee80d417078f54