Back to Search
Start Over
Structure of 36Ca under the Coulomb magnifying glass
- Publication Year :
- 2022
- Publisher :
- American Physical Society, 2022.
-
Abstract
- Artículo escrito por un elevado número de autores, solo se referencian el que aparece en primer lugar, el nombre del grupo de colaboración, si le hubiere, y los autores pertenecientes a la UAM<br />Detailed spectroscopy of the neutron-deficient nucleus Ca36 was obtained up to 9 MeV using the Ca37(p,d)Ca36 and the Ca38(p,t)Ca36 transfer reactions. The radioactive nuclei, produced by the LISE spectrometer at GANIL, interacted with the protons of the liquid hydrogen target CRYPTA, to produce light ejectiles (the deuteron d or triton t) that were detected in the MUST2 detector array, in coincidence with the heavy residues identified by a zero-degree detection system. Our main findings are (i) a similar shift in energy for the 11+ and 21+ states by about -250 keV, as compared with the mirror nucleus S36; (ii) the discovery of an intruder 02+ state at 2.83(13) MeV, which appears below the first 2+ state, in contradiction with the situation in S36; and (iii) a tentative 03+ state at 4.83(17) MeV, proposed to exhibit a bubble structure with two neutron vacancies in the 2s1/2 orbit. The inversion between the 02+ and 21+ states is due to the large mirror energy difference (MED) of -516(130) keV for the former. This feature is reproduced by shell model calculations, using the sd-pf valence space, predicting an almost pure intruder nature for the 02+ state, with two protons (neutrons) being excited across the Z=20 magic closure in Ca36 (S36). This mirror system has the largest MEDs ever observed, if one excludes the few cases induced by the effect of the continuum
Details
- Language :
- English
- Database :
- OpenAIRE
- Accession number :
- edsair.od......1371..add1b73812ca17c8a28d4a6f6954ff7c