Back to Search Start Over

CHARACTERIZING THE HUMAN INTESTINAL MICROBIOME

Authors :
Shekarriz, Shahrokh
Surette, Michael G
Biochemistry and Biomedical Sciences
Publication Year :
2022

Abstract

The collection of microbes that inhabits the human gastrointestinal tract is known as intestinal microbiota, and an enormous body of work has shown that their activities contribute to health and disease. Ulcerative colitis (UC), which is a type of inflammatory bowel disease, is considered to arise due to a disruption in the balance between the immune system and microbiota. However, there is little consensus on the mechanism of action and microbes involved in the disease manifestation. In this work, I applied culture-enriched metagenomics (CEMG) to characterize the dynamics of gut microbiota in healthy individuals and UC patients. I showed that CEMG provides a higher resolution to study these microbial communities, and we used this approach to understand microbial colonization after fecal microbiota transplantation (FMT) therapy in UC patient. I showed that sequencing approaches alone did not reveal consistent engraftment across FMT responders. Using CEMG and a collection of bacterial whole-genome sequences, I showed patient-specific microbial strain transfer and a signature of commonly engrafted genes only in patients who responded to FMT. In this work, I also investigated the dynamics of a highly abundant bacteriophage, crAssphage, in an FMT donor and implemented a new method to detect bacteriophage engraftment post-FMT using SNP analysis. Finally, it has been suggested that antibiotic treatment before FMT may increase the efficacy of FMT. However, in this work, I show that while antibiotics alter the microbiome, there was no difference in the composition of the microbiome of antibiotic vs placebo group post-FMT. This is consistent with the randomized controlled trial results that shows pretreatment with antibiotics does not improve FMT outcome. Together, this work demonstrate the importance of in-depth microbiome analysis applied to culture-dependent and -independent sequencing to characterize microbial changes post-FMT. Dissertation Doctor of Philosophy (PhD) Many bacteria reside in the human gut, and they are essential in our health and in disease. It is evident that these bacteria are associated with inflammatory bowel disease, but we do not yet know how and what bacteria are involved in this disease. In this work, I describe a method to study these bacteria from stool that relies on growing them and investigating their DNA. I showed that our approach helped us recover a greater diversity of these bacteria and their genetic content in healthy individuals and patients with inflammatory bowel disease compared to methods that use only DNA based approaches. Using this method, we could better understand why some patients responded to a treatment consisting of transferring stool content from healthy donor to patient. I also investigated a group of viruses that infect bacteria and implemented a new computational method based on DNA sequencing to test whether these viruses transfer to the patient after receiving the fecal therapy. We also found that antibiotic treatment before fecal therapy in patients with inflammatory bowel disease does not improve the patient’s recovery.

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.od......1154..631dc5a3c8883af7899aef9b5a20a014