Back to Search
Start Over
How to explain graph-based semi-supervised learning for non-mathematicians?
- Publication Year :
- 2019
- Publisher :
- Malmö universitet, Fakulteten för teknik och samhälle (TS), 2019.
-
Abstract
- Den stora mängden tillgänglig data på internet kan användas för att förbättra förutsägelser genom maskininlärning. Problemet är att sådan data ofta är i ett obehandlat format och kräver att någon manuellt bestämmer etiketter på den insamlade datan innan den kan användas av algoritmen. Semi-supervised learning (SSL) är en teknik där algoritmen använder ett fåtal förbehandlade exempel och därefter automatiskt bestämmer etiketter för resterande data. Ett tillvägagångssätt inom SSL är att representera datan i en graf, vilket kallas för graf-baserad semi-supervised learning (GSSL), och sedan hitta likheter mellan noderna i grafen för att automatiskt bestämma etiketter.Vårt mål i denna uppsatsen är att förenkla de avancerade processerna och stegen för att implementera en GSSL-algoritm. Vi kommer att gå igen grundläggande steg som hur utvecklingsmiljön ska installeras men även mer avancerade steg som data pre-processering och feature extraction. Feature extraction metoderna som uppsatsen använder sig av är bag-of-words (BOW) och term frequency-inverse document frequency (TF-IDF). Slutgiltligen presenterar vi klassificering av dokument med Label Propagation (LP) och Multinomial Naive Bayes (MNB) samt en detaljerad beskrivning över hur GSSL fungerar.Vi presenterar även prestanda för klassificering-algoritmerna genom att klassificera 20 Newsgroup datasetet med LP och MNB. Resultaten dokumenteras genom två olika utvärderingspoäng vilka är F1-score och accuracy. Vi gör även en jämförelse mellan MNB och LP med två olika typer av kärnor, KNN och RBF, på olika mängder av förbehandlade träningsdokument. Resultaten ifrån klassificering-algoritmerna visar att MNB är bättre på att klassificera datasetet än LP. The large amount of available data on the web can be used to improve the predictions made by machine learning algorithms. The problem is that such data is often in a raw format and needs to be manually labeled by a human before it can be used by a machine learning algorithm. Semi-supervised learning (SSL) is a technique where the algorithm uses a few prepared samples to automatically prepare the rest of the data. One approach to SSL is to represent the data in a graph, also called graph-based semi-supervised learning (GSSL), and find similarities between the nodes for automatic labeling.Our goal in this thesis is to simplify the advanced processes and steps to implement a GSSL-algorithm. We will cover basic tasks such as setup of the developing environment and more advanced steps such as data preprocessing and feature extraction. The feature extraction techniques covered are bag-of-words (BOW) and term frequency-inverse document frequency (TF-IDF). Lastly, we present how to classify documents using Label Propagation (LP) and Multinomial Naive Bayes (MNB) with a detailed explanation of the inner workings of GSSL. We showcased the classification performance by classifying documents from the 20 Newsgroup dataset using LP and MNB. The results are documented using two different evaluation scores called F1-score and accuracy. A comparison between MNB and the LP-algorithm using two different types of kernels, KNN and RBF, was made on different amount of labeled documents. The results from the classification algorithms shows that MNB is better at classifying the data than LP.
Details
- Language :
- English
- Database :
- OpenAIRE
- Accession number :
- edsair.od.......681..c47f664351c0d0ecdbd0cdc006e5d70f