Back to Search Start Over

K-theory for ternary structures

K-theory for ternary structures

Authors :
Bohle, D. (Dennis)
Wend, G. (Gottfried)
Universitäts- und Landesbibliothek Münster
Publication Year :
2011

Abstract

Ziel dieser Arbeit ist es K-Theorie für JB*-Tripelsysteme zu definieren. Dies sind Banachräume, versehen mit einem dreifachen Produkt, die als Kategorie äquivalent zu den beschränkten symmetrischen Gebieten in Banachräumen sind, die einen Basispunkt haben. Da JB*-Tripelsysteme im Allgemeinen keine eindeutige Operatorraumstruktur besitzen, definieren wir zunächst eine K-Theorie für sogenannte ternäre Ringe von Operatoren (kurz TROs), die diese Einschränkung nicht haben. Als Anwendung klassifizieren wir die induktiven Limiten endlichdimensionaler TROs. Als nächstes betten wir jedes JB*-Tripelsystem in seinen universellen einhüllenden TRO ein, dessen Existenz wir beweisen. Diese Zuordnung ist funktoriell und erlaubt uns, die K-Theorie eines JB*-Tripelsystems als K-Theorie seines universellen einhüllenden TROs zu definieren. Nachdem wir die universellen einhüllenden TROs der endlichdimensionalen Cartanfaktoren bestimmt haben, gelingt es uns mit einer K-theoretischen Version der Wurzelsysteme alle endlichdimensionalen, treu darstellbaren JB*-Tripelsysteme zu klassifizieren.

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.od.......517..6d3a56fb29f7bd162630e1b866d114c9