Back to Search
Start Over
Voluntary activation of knee extensor muscles with transcranial magnetic stimulation
- Publication Year :
- 2020
- Publisher :
- American Physiological Society, 2020.
-
Abstract
- We examined if transcranial magnetic stimulation (TMS) is a valid tool for assessment of voluntary activation of the knee extensors in healthy individuals. Maximal M-waves (Mmax) of vastus lateralis (VL) were evoked with electrical stimulation of femoral nerve (FNS); Mmax of medial hamstrings (HS) was evoked with electrical stimulation of sciatic nerve branches; motor evoked potentials (MEPs) of VL and HS were evoked with TMS; superimposed twitches (SIT) of knee extensors were evoked with FNS and TMS. In Study 1, TMS intensity (69% output(SD 5)) was optimized for MEP sizes, but guidelines for test validity could not be met. Agonist VL MEPs were too small (51.4% Mmax(SD 11.9); guideline ≥70% Mmax) and antagonist HS MEPs were too big (16.5% Mmax(SD 10.3); guideline max). Consequently, the TMS estimated resting twitch (99.1 N(SD 37.2)) and FNS resting twitch (142.4 N(SD 41.8)) were different. In Study 2, SITs at 90% maximal voluntary contraction (MVC) were similar between TMS (16.1 N(SD 10.3)) and FNS (20.9 N(SD 16.7)), when TMS intensity was optimized for this purpose, suggesting a procedure that combines TMS SITs with FNS resting twitches could be valid. In Study 3, which tested the TMS intensity (56% output(SD 18)) that evoked the largest SIT at 90%MVC, voluntary activation from TMS (87.3%(SD 7.1)) and FNS (84.5%(SD 7.6)) were different. In sum, the contemporary procedure for TMS-based voluntary activation of the knee extensors is invalid. A modified procedure improves validity, but only in individuals who meet rigorous inclusion criteria for SITs and MEPs.
- Subjects :
- Physiology
06 Biological Sciences, 11 Medical and Health Sciences
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Accession number :
- edsair.od.......363..f57f9165cba51d1f87008859c114a35f