Back to Search Start Over

Decoupling the effects of hydrophilic and hydrophobic moieties at the neuron-nanofibre interface

Authors :
Martin AD
Wojciechowski JP
Du EY
Rawal A
Stefen H
Au CG
Hou L
Cranfield CG
Fath T
Ittner LM
Thordarson P
Publication Year :
2020
Publisher :
ROYAL SOC CHEMISTRY, 2020.

Abstract

© The Royal Society of Chemistry. Peptide-based nanofibres are a versatile class of tunable materials with applications in optoelectronics, sensing and tissue engineering. However, the understanding of the nanofibre surface at the molecular level is limited. Here, a series of homologous dilysine-diphenylalnine tetrapeptides were synthesised and shown to self-assemble into water-soluble nanofibres. Despite the peptide nanofibres displaying similar morphologies, as evaluated through atomic force microscopy and neutron scattering, significant differences were observed in their ability to support sensitive primary neurons. Contact angle and labelling experiments revealed that differential presentation of lysine moieties at the fibre surface did not affect neuronal viability; however the mobility of phenylalanine residues at the nanofibre surface, elucidated through solid- and gel-state NMR studies and confirmed through tethered bilayer lipid membrane experiments, was found to be the determining factor in governing the suitability of a given peptide as a scaffold for primary neurons. This work offers new insights into characterising and controlling the nanofibre surface at the molecular level.

Subjects

Subjects :
03 Chemical Sciences

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.od.......363..76424f35d05dd429978067d2cd477606