Back to Search Start Over

Films minces supramoléculaires de copolymères de PS-P4VP réalisés par trempage

Authors :
Roland, Sébastien
Prud'homme, Robert
Bazuin, Geraldine
Publication Year :
2013
Publisher :
Université de Montréal, 2013.

Abstract

Bien que ce soit un procédé industriel répandu, les films de copolymères à blocs préparés par trempage (« dip-coating ») sont moins étudiés que ceux obtenus par tournette (« spin-coating »). Pourtant, il est possible grâce à cette technique de contrôler précisément les caractéristiques de ces films. Au-delà de la méthode de fabrication, la capacité de modifier la morphologie des films trempés à l’aide d’autres facteurs externes est un enjeu primordial pour leur utilisation dans les nanotechnologies. Nous avons choisi, ici, d’étudier l’influence d’une petite molécule sur la morphologie de films supramoléculaires réalisés par « dip-coating » à partir de solutions de poly(styrène-b-4-vinyl pyridine) (PS-P4VP) dans le tétrahydrofurane (THF). En présence de 1-naphtol (NOH) et d’1-acide napthoïque (NCOOH), qui se complexent par pont hydrogène au bloc P4VP, ces films donnent, respectivement, une morphologie en nodules (sphères) et en stries (cylindres horizontaux). Des études par spectroscopie infrarouge ont permis de mesurer la quantité de petite molécule dans ces films minces, qui varie avec la vitesse de retrait mais qui s’avère être identique pour les deux petites molécules, à une vitesse de retrait donnée. Cependant, des études thermiques ont montré qu’une faible fraction de petite molécule est dispersée dans le PS (davantage de NOH que de NCOOH à cause de la plus faible liaison hydrogène du premier). La vitesse de retrait est un paramètre clé permettant de contrôler à la fois l’épaisseur et la composition du film supramoléculaire. L’évolution de l’épaisseur peut être modélisée par deux régimes récemment découverts. Aux faibles vitesses, l’épaisseur décroît (régime de capillarité), atteint un minimum, puis augmente aux vitesses plus élevées (régime de drainage). La quantité de petite molécule augmente aux faibles vitesses pour atteindre un plateau correspondant à la composition de la solution aux vitesses les plus élevées. Des changements de morphologie, à la fois liés à l’épaisseur et à la quantité de petite molécule, sont alors observés lorsque la vitesse de retrait est modifiée. Le choix du solvant est aussi primordial dans le procédé de « dip-coating » et a été étudié en utilisant le chloroforme, qui est un bon solvant pour les deux blocs. Il s’avère qu’à la fois la composition ainsi que la morphologie des films de PS-P4VP complexés sont différentes par rapport aux expériences réalisées dans le THF. Premièrement, la quantité de petite molécule reste constante avec la vitesse de retrait mais les films sont plus riches en NCOOH qu’en NOH. Deuxièmement, la morphologie des films contenant du NOH présente des stries ainsi que des lamelles à plat, tandis que seules ces dernières sont observables pour le NCOOH. Ce comportement est essentiellement dû à la quantité différente de petite molécule modulée par leur force de complexation différente avec le P4VP dans le chloroforme. Enfin, ces films ont été utilisés pour l’adsorption contrôlée de nanoparticules d’or afin de guider leur organisation sur des surfaces recouvertes de PS-P4VP. Avant de servir comme gabarits, un recuit en vapeurs de solvant permet soit d’améliorer l’ordre à longue distance des nodules de P4VP, soit de modifier la morphologie des films selon le solvant utilisé (THF ou chloroforme). Ils peuvent être ensuite exposés à une solution de nanoparticules d’or de 15 nm de diamètre qui permet leur adsorption sélective sur les nodules (ou stries) de P4VP.<br />Although it is an important industrial process, block copolymer thin films obtained by dip-coating have been far less studied than those obtained by spin-coating. However, this technique allows precise control of film properties and morphologies without the need for subsequent annealing. Besides the process itself, the ability to modify the morphology of block copolymer thin films is of interest for their use in nanotechnology applications. Here, we investigated supramolecular thin films of poly(styrene-b-4-vinyl pyridine) (PS-P4VP) dip-coated from tetrahydrofuran (THF) solutions containing small molecules that hydrogen bond to P4VP. In the initial dip-coating conditions, films complexed with 1-naphthol (NOH) show a dot morphology (spheres), whereas those containing 1-naphthoic acid (NCOOH) show a stripe morphology (horizontal cylinders). It was discovered that the amount of small molecule in the film, measured by infrared spectroscopy, varies with dip-coating rate, but is the same for both small molecules at any given rate. A thermal study showed that a small fraction of the small molecule, more NOH than NCOOH due to the weaker H-bond of the former, is dispersed in the PS phase, thus rationalizing the difference in their morphology evolution with rate. Thus, the dip-coating rate is a key parameter for controlling both the average film thickness and, for supramolecular polymers, the film composition. We observed that the evolution of the thickness with rate can be modeled by two regimes, in accordance with a recent literature study on dip-coated sol-gel films. At low rates, the thickness first decreases (capillarity regime), reaches a minimum and, at higher rates, increases (draining regime), resulting in a V-shaped film thickness/dip-coating rate curve. In parallel, the amount of small molecule in the film increases with rate in the capillarity regime before reaching a plateau corresponding to the solution composition in the draining regime. Morphology changes, related to the film thickness and the small molecule content, are therefore observed by modifying the dip-coating rate. We further show that the dip-coating solvent also influences the composition and morphology of the film, by comparing the use of chloroform (CHCl3), which is a good solvent for both blocks, with THF, which is a non-solvent for P4VP. With CHCl3, the small molecule content remains constant with the dip-coating rate, although it is higher for NCOOH than for NOH. Furthermore, the morphology of NOH-containing PS-P4VP thin films shows stripes and flat-on lamellae, whereas those containing NCOOH show only flat-on lamellae. This is attributed to the difference in their small molecule content, possibly modulated by the reduction in solubility of the P4VP block in CHCl3 when complexed with the small molecule. Finally, dip-coated films were used as templates for the controlled adsorption of gold nanoparticles. Prior to adsorption, solvent annealing was applied to the films either to improve the long-range order of the P4VP dots or to change the film morphology, which is dependent on the solvent used (THF or chloroform). They were then exposed to a 15-nm gold nanoparticles solution, which allows the selective adsorption on the P4VP dots (or stripes). It was possible to adsorb one nanoparticle per P4VP dot by matching their diameters.

Details

Language :
French
Database :
OpenAIRE
Accession number :
edsair.od.......317..b90a9d21da696bff10417b2bffa14eff